BRAINLIEST
Solve for X. Round to the nearest tenth.

BRAINLIEST Solve For X. Round To The Nearest Tenth.

Answers

Answer 1

Answer:

12

Step-by-step explanation:

there is no x in the question


Related Questions

How is the graph of g(x) = [tex](x-10)^{2}[/tex] related to the graph of f(x)= [tex]x^{2}[/tex]

Answers

(x - 10)² is the graph x² by translation of 10 units moved to the right.

pls help with this question asap!

Answers

Answer:

ggggggggggggggggggggg

Can someone help me with this?

Answers

Answer:

the 20 dollars = the slope

the fee = the y-intercept

if a line has a slope of 20 and passes through the point (7,200), then what is the y-intercept?

y-intercept is 60


What number does this Roman numeral represent?
XXXII

Answers

Answer: 32

Step-by-step explanation:

The roman numeral XXXII is 32 and XXIII is 23.

The number for this Roman numeral XXXII is, 32

Given that,

We have to write the number for this Roman numeral  XXXII.

Since, We know that,

X represent in number = 10

I represent in number = 1

Hence, The number for this Roman numeral  XXXII is,

⇒ XXXII

⇒ (10 + 10 + 10 + 1 + 1)

⇒ 32

Therefore, the number for this Roman numeral  XXXII is, 32

Learn more about Number system visit:

https://brainly.com/question/17200227

#SPJ6

Solve.

x−(−2 3/8)=−1/4

What is the solution to the equation?

Enter your answer as a simplified mixed number in the box.

X= ??

Answers

Sorry if I’m wrong but I think the answer is x= -2 5/8
Different form : -21/8
Decimal form: -2.625

explain each step please :)

Answers

Answer:

u need to use the quadratic formula

Step-by-step explanation:

I think this is about it

What percentage is a reduction from SEK 100 to SEK 90?

Answers

Answer:

  10%

Step-by-step explanation:

The change is 90-100 = -10. As a percentage of the original amount, that is ...

  -10/100 × 100% = -10%

The change from 100 to 90 is a reduction of 10%.

According to the glossary, what are large meteors that enter the Earth's atmosphere?

A) Active galaxy
B) Blueshift
С) Coma
D) Bolide​

Answers

B) Blueshift bbbbbbbbbbb

What sentence represents this equation?

912=15−x


912 ​is the same as a number decreased by 15.

912 is the same as 15 decreased by a number.

15 decreased by 912 is the same as a number.

A number is the same as the difference of 15 and 912.

Answers

The sentence representing the equation is 912 is the same as 15 decreased by a number.

What is an equation?

An equation is a mathematical statement that shows that two mathematical expressions are equal.

Given an equation, 912 = 15 − x

Here, 912 is equal to a number which is being subtracted from 15.

Hence, The sentence representing the equation is 912 is the same as 15 decreased by a number.

For more references on equation, click;

https://brainly.com/question/10413253

#SPJ2

b) Express 0.6363......as a rational number in its lowest term. ​

Answers

Answer:

[tex]\frac{7}{11}[/tex]

Step-by-step explanation:

We require 2 equations with the repeating digits (63) placed after the decimal point.

let x = 0.636363..... (1) multiply both sides by 100

100x = 63.6363... (2)

Subtract (1) from (2) thus eliminating the repeating digits

99x = 63 ( divide both sides by 99 )

x = [tex]\frac{63}{99}[/tex] = [tex]\frac{7}{11}[/tex] ← in simplest form

Which situation can be represented by this inequality?

135 ≤ 10r + 15

Question 6 options:

A-Hugo has 10 songs in his music player. He will add 15 songs every month. Hugo collects songs for r months. For what values of r will Hugo have at most 135 songs?


B-Hugo has 10 songs in his music player. He will add 15 songs every month. Hugo collects songs for r months. For what values of r will Hugo have at least 135 songs?


C-Hugo has 15 songs in his music player. He will add 10 songs every month. Hugo collects songs for r months. For what values of r will Hugo have at most 135 songs?


D-Hugo has 15 songs in his music player. He will add 10 songs every month. Hugo collects songs for r months. For what values of r will Hugo have at least 135 songs?

Answers

The true option is: (d) Hugo has 15 songs in his music player. He will add 10 songs every month. Hugo collects songs for r months. For what values of r will Hugo have at least 135 songs?

The inequality is given as:

[tex]\mathbf{135 \le 10r + 15}[/tex]

Rewrite as:

[tex]\mathbf{10r + 15\ge 135 }[/tex]

From the options, we can see that the inequality represents songs in a music player.

Linear inequalities can be represented as:

[tex]\mathbf{mx + b \ge y}[/tex]

Where:

m represents the rate i.e. 10

b represents the y-intercept or base i.e. 15

>= represents at least

So, the inequality can be interpreted as:

10 songs are added every monthThe base number of songs is 15He wants to have at least 135 songs

Hence, the true option is (d)

Read more about linear inequalities at:

https://brainly.com/question/11897796

PLEASE HELP ME I NEED THIS DONE RIGHT NOW

I know it says the answers are on the back but the answers aren’t there!!

Answers

I will attach you a photo :)

What is free energy.

Answers

Answer:

free energy, in thermodynamics, energy-like property or state function of a system in thermodynamic equilibrium. Free energy has the dimensions of energy, and its value is determined by the state of the system and not by its history.

law of indices , show working
1. 10^8 × 10^4

2. (11^5)^4

3. 8^6 ÷ 8^3

4. (12^2) × 12^4

5. (13^4) ÷ 13^5

6. (5^2 × 5^3) ÷ 5^4

7. 18^4 ÷ 18^6

8. (19^2)^4 ÷ 19^8​

Answers

Answer:

Below.

Step-by-step explanation:

1. 10^8 × 10^4 = 10(8+4) = 10^12.

2. (11^5)^4 = 11^(5*4) = 11^20.

3. 8^6 ÷ 8^3 = 8^(6-3) = 8^3.

4. (12^2) × 12^4 = 12^6.

5. (13^4) ÷ 13^5 = 13^(4-5) = 13^-1.

6. (5^2 × 5^3) ÷ 5^4 = 5^5 / 5^4 = 5.

7. 18^4 ÷ 18^6 = 18^-2.

8. (19^2)^4 ÷ 19^8​ = 19^8 / 19^8  = 18^(8-8) = 18^0 = 1.

(PICTURE PROVIDED)
HELPPPPPPPPP PLS

Answers

Answer is letter D Six units it is congruent to line DC

dont mind this i just need the achivement

Answers

Answer:

K cool

Step-by-step explanation:

Answer:

Step-by-step explanation:

Which is the better deal? $39.55 for 7 pairs of jeans OR $22.48 for 4 pairs of jeans

Answers

Answer:

$22.48 for 4 pairs of jeans is a better deal.

Step-by-step explanation:

To find the price of one pair of jeans, you divide.

39.55 ÷ 7 = price of 1 pair of jeans

39.55 ÷ 7 = $5.65

22.48 ÷ 4 = price of 1 pair of jeans

22.48 ÷ 4 = $5.62

The price difference between the two prices is 3 cents. So, $22.48 for 4 pairs is a better deal that $39.55 for 7 pairs of jeans.

Hope this helps!

Please help if you can! A photographer rented a booth at an art fair for $630. The photographer sold each photograph for $45 and made a total of $1,980 after paying for the booth. How many photographs did the photographer sell at the fair?

Answers

He needed to make a total of 1980 + 630 = $2610

$2610 / 45 = 58

Answer: 58

1) -x2
-Х2
I need help with this problem

Answers

if you typed in -x2-x2 it would be -x4

PLS HELP WILL MARK BRAINLIEST, PLS HURRY

Answers

Answer:

B

Step-by-step explanation:

Find the number of sides of a regular polygon whose each interior angle is 150 degree ...pls give step by step explaination

Answers

Answer:

12

Step-by-step explanation:

the angle is defined by equation ((n-2)*180)/n,where n is number of sides of a regular polygon

so here 180n-360=150n

30n=360

n=12

a square has a diagonal length of 10 meters. How long is the side of the square?

Answers

Answer:

5 × √2 or 7,071067811865475

Step-by-step explanation:

the diagonal of a square splits the square into 2 right triangles. So we can use Pythagorean's theorem.

where c is the hypotenuse. So the diagonal is the hypotenuse here, and thus c = 10. Now, since we are dealing with a square, all the sides are the same length, so a = b. So we have:

a² + a² = c²

2a² = 100

a² = 50

a = √50

a = 5 × √2 or 7,071067811865475

--------------------------

Answer: 50

Step-by-step explanation  :<

Avery bought a washing machine originally priced at $864.72 but on sale for 30% off. After 4% sales tax, what was the total cost?

Answers

Answer: 629.51

Step-by-step explanation: 30% of 864.72 is 259.416

864.72 - 259.416 = 605.304      4% of 605.3 = 24.212     605.3 + 24.21 = 629.51

There are only red sweets and yellow sweets in a bag.
There are n red sweets in the bag.
There are 8 yellow sweets in the bag.
Sajid is going to take at random a sweet from the bag and eat it.
7
He says that the probability that the sweet will be red is
10
7
10
(a) Show why the probability cannot be

Answers

Using the probability concept, it is found that since the number of red sweets would be a decimal number, the probability cannot be [tex]\frac{7}{10}[/tex]

A probability is the number of desired outcomes divided by the number of total outcomes.

In this problem:

In total, there are 8 + n sweets in the bag.Of those, n are red.

The probability of red is:

[tex]p = \frac{n}{n + 8}[/tex]

Supposing [tex]p = \frac{7}{10}[/tex], we solve for n:

[tex]\frac{n}{n + 8} = \frac{7}{10}[/tex]

[tex]10n = 7n + 56[/tex]

[tex]3n = 56[/tex]

[tex]n = \frac{56}{3}[/tex]

[tex]n = 18.67[/tex]

Since the number of red sweets would be a decimal number, the probability cannot be [tex]\frac{7}{10}[/tex]

A similar problem is given at https://brainly.com/question/15536019

A stadium has 35,000 seats. 4% of the seats have cushioned backs. How many seats are NOT cushioned in the stadium?

Answers

Answer:

1400

Step-by-step explanation:

What is 2.4 divided by 1.2?

Answers

Answer:

Your answer should be 2.

The answer would be 2

p=5(q-2r)/r

solve for r

Answers

Answer:

r = 5q / (p + 10)

Step-by-step explanation:

p = 5(q - 2r)/r

multiply both sides by r

pr = 5(q - 2r)

distribute

pr = 5q  - 10r

add 10r to both sides

pr + 10r = 5q

Factor out r

r(p + 10) = 5q

divide both sides by p + 10

r = 5q / (p + 10)

Let A be a given matrix below. First, find the eigenvalues and their corresponding eigenspaces for the following matrices. Then, find an invertible matrix P and a diagonal matrix such that A = PDPâ’1.
(a) [ 3 2 2 3 ]
(b) [ 1 â 1 2 â 1 ]
(c) [1 2 3 0 2 3 0 0 3]
(d) [3 1 1 1 3 1 1 1 3]

Answers

It looks like given matrices are supposed to be

[tex]\begin{array}{ccccccc}\begin{bmatrix}3&2\\2&3\end{bmatrix} & & \begin{bmatrix}1&-1\\2&-1\end{bmatrix} & & \begin{bmatrix}1&2&3\\0&2&3\\0&0&3\end{bmatrix} & & \begin{bmatrix}3&1&1\\1&3&1\\1&1&3\end{bmatrix}\end{array}[/tex]

You can find the eigenvalues of matrix A by solving for λ in the equation det(A - λI) = 0, where I is the identity matrix. We also have the following facts about eigenvalues:

• tr(A) = trace of A = sum of diagonal entries = sum of eigenvalues

• det(A) = determinant of A = product of eigenvalues

(a) The eigenvalues are λ₁ = 1 and λ₂ = 5, since

[tex]\mathrm{tr}\begin{bmatrix}3&2\\2&3\end{bmatrix} = 3 + 3 = 6[/tex]

[tex]\det\begin{bmatrix}3&2\\2&3\end{bmatrix} = 3^2-2^2 = 5[/tex]

and

λ₁ + λ₂ = 6   ⇒   λ₁ λ₂ = λ₁ (6 - λ₁) = 5

⇒   6 λ₁ - λ₁² = 5

⇒   λ₁² - 6 λ₁ + 5 = 0

⇒   (λ₁ - 5) (λ₁ - 1) = 0

⇒   λ₁ = 5 or λ₁ = 1

To find the corresponding eigenvectors, we solve for the vector v in Av = λv, or equivalently (A - λI) v = 0.

• For λ = 1, we have

[tex]\begin{bmatrix}3-1&2\\2&3-1\end{bmatrix}v = \begin{bmatrix}2&2\\2&2\end{bmatrix}v = 0[/tex]

With v = (v₁, v₂)ᵀ, this equation tells us that

2 v₁ + 2 v₂ = 0

so that if we choose v₁ = -1, then v₂ = 1. So Av = v for the eigenvector v = (-1, 1)ᵀ.

• For λ = 5, we would end up with

[tex]\begin{bmatrix}-2&2\\2&-2\end{bmatrix}v = 0[/tex]

and this tells us

-2 v₁ + 2 v₂ = 0

and it follows that v = (1, 1)ᵀ.

Then the decomposition of A into PDP⁻¹ is obtained with

[tex]P = \begin{bmatrix}-1 & 1 \\ 1 & 1\end{bmatrix}[/tex]

[tex]D = \begin{bmatrix}1 & 0 \\ 0 & 5\end{bmatrix}[/tex]

where the n-th column of P is the eigenvector associated with the eigenvalue in the n-th row/column of D.

(b) Consult part (a) for specific details. You would find that the eigenvalues are i and -i, as in i = √(-1). The corresponding eigenvectors are (1 + i, 2)ᵀ and (1 - i, 2)ᵀ, so that A = PDP⁻¹ if

[tex]P = \begin{bmatrix}1+i & 1-i\\2&2\end{bmatrix}[/tex]

[tex]D = \begin{bmatrix}i&0\\0&i\end{bmatrix}[/tex]

(c) For a 3×3 matrix, I'm not aware of any shortcuts like above, so we proceed as usual:

[tex]\det(A-\lambda I) = \det\begin{bmatrix}1-\lambda & 2 & 3 \\ 0 & 2-\lambda & 3 \\ 0 & 0 & 3-\lambda\end{bmatrix} = 0[/tex]

Since A - λI is upper-triangular, the determinant is exactly the product the entries on the diagonal:

det(A - λI) = (1 - λ) (2 - λ) (3 - λ) = 0

and it follows that the eigenvalues are λ₁ = 1, λ₂ = 2, and λ₃ = 3. Now solve for v = (v₁, v₂, v₃)ᵀ such that (A - λI) v = 0.

• For λ = 1,

[tex]\begin{bmatrix}0&2&3\\0&1&3\\0&0&2\end{bmatrix}v = 0[/tex]

tells us we can freely choose v₁ = 1, while the other components must be v₂ = v₃ = 0. Then v = (1, 0, 0)ᵀ.

• For λ = 2,

[tex]\begin{bmatrix}-1&2&3\\0&0&3\\0&0&1\end{bmatrix}v = 0[/tex]

tells us we need to fix v₃ = 0. Then -v₁ + 2 v₂ = 0, so we can choose, say, v₂ = 1 and v₁ = 2. Then v = (2, 1, 0)ᵀ.

• For λ = 3,

[tex]\begin{bmatrix}-2&2&3\\0&-1&3\\0&0&0\end{bmatrix}v = 0[/tex]

tells us if we choose v₃ = 1, then it follows that v₂ = 3 and v₁ = 9/2. To make things neater, let's scale these components by a factor of 2, so that v = (9, 6, 2)ᵀ.

Then we have A = PDP⁻¹ for

[tex]P = \begin{bmatrix}1&2&9\\0&1&6\\0&0&2\end{bmatrix}[/tex]

[tex]D = \begin{bmatrix}1&0&0\\0&2&0\\0&0&3\end{bmatrix}[/tex]

(d) Consult part (c) for all the details. Or, we can observe that λ₁ = 2 is an eigenvalue, since subtracting 2I from A gives a matrix of only 1s and det(A - 2I) = 0. Then using the eigen-facts,

• tr(A) = 3 + 3 + 3 = 9 = 2 + λ₂ + λ₃   ⇒   λ₂ + λ₃ = 7

• det(A) = 20 = 2 λ₂ λ₃   ⇒   λ₂ λ₃ = 10

and we find λ₂ = 2 and λ₃ = 5.

I'll omit the details for finding the eigenvector associated with λ = 5; I ended up with v = (1, 1, 1)ᵀ.

• For λ = 2,

[tex]\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}v = 0[/tex]

tells us that if we fix v₃ = 0, then v₁ + v₂ = 0, so that we can pick v₁ = 1 and v₂ = -1. So v = (1, -1, 0)ᵀ.

• For the repeated eigenvalue λ = 2, we find the generalized eigenvector such that (A - 2I)² v = 0.

[tex]\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}^2 v = \begin{bmatrix}3&3&3\\3&3&3\\3&3&3\end{bmatrix}v = 0[/tex]

This time we fix v₂ = 0, so that 3 v₁ + 3 v₃ = 0, and we can pick v₁ = 1 and v₃ = -1. So v = (1, 0, -1)ᵀ.

Then A = PDP⁻¹ if

[tex]P = \begin{bmatrix}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{bmatrix}[/tex]

[tex]D = \begin{bmatrix}5&0&0\\0&2&0\\0&2&2\end{bmatrix}[/tex]

kokokokokkokokokokokookokokk.

Answers

Answer:

OMG️️

Step-by-step explanation:

What is this❓

what have you wrote✍️

Answer:

hye nice what have written tell then I will answer you.

what is the simplified fractional equivalent of the terminating decimal 0.12?

Answers

Answer:

6/50

Step-by-step explanation:

0.12 as a fraction is 6/50.

Answer:

3/25

Step-by-step explanation:

12/100=6/50=3/25 .