Arsenic, hydraulic fracturing, lead, and PFAS present chemical threats to global drinking water supplies in different ways. For each problem, describe: (a) the origin of exposure, (b) human health consequences, (c) drivers of continued exposure, and (d) examples of modern solutions.

Answers

Answer 1

Arsenic, hydraulic fracturing, lead, and PFAS present chemical threats to global drinking water supplies in different ways.

Let's discuss each of them in detail:

(a) Arsenic - The origin of arsenic exposure is natural deposits or contamination from agricultural or industrial practices. Human health consequences include skin, lung, liver, and bladder cancers. It can also lead to cardiovascular diseases, skin lesions, and neurodevelopmental effects. Drivers of continued exposure include poor regulation and monitoring. Modern solutions include rainwater harvesting and treatment.

(b) Hydraulic fracturing - Hydraulic fracturing involves using a mixture of chemicals, water, and sand to extract natural gas and oil from shale rock formations. The origin of exposure is contaminated surface and groundwater due to the release of chemicals from fracking fluids and other sources. Human health consequences include skin, eye, and respiratory irritation, headaches, dizziness, and reproductive and developmental problems. Drivers of continued exposure include lack of regulation and poor oversight. Modern solutions include alternative energy sources and regulation of the industry.

(c) Lead - Lead contamination in drinking water can occur due to corrosion of plumbing materials. Human health consequences include neurological damage, developmental delays, anemia, and hypertension. Drivers of continued exposure include aging infrastructure and poor maintenance. Modern solutions include replacing lead service lines, testing for lead levels, and implementing corrosion control.

(d) PFAS - PFAS (per- and polyfluoroalkyl substances) are human-made chemicals used in a variety of consumer and industrial products. They can enter the water supply through wastewater discharges, firefighting foams, and other sources. Human health consequences include developmental effects, immune system damage, cancer, and thyroid hormone disruption. Drivers of continued exposure include the continued use of PFAS in consumer and industrial products. Modern solutions include reducing the use of PFAS in products and treatment methods such as granular activated carbon.

To know more about hydraulic fracturing visit:

https://brainly.com/question/31032804

#SPJ11


Related Questions

What can you conclude about the relative strengths of the intermolecular forces between particles of A and Boelative to those between particles of A and those between particles of By O The intermolecular forces between particles A and B are wearer than those between paraces of A and those between particles of B O The intermolecular torces between particles A and B are stronger than those between particles of A and those between particles of B O The intermolecular forces between particles A and B are the same as those between pances of A and those between particles of B O Nothing can be concluded about the relative strengths of intermolecular forces from this observation

Answers

The relative strength of the intermolecular forces between particles of A and B is that the intermolecular forces between particles A and B are weaker than those between particles of A and those between particles of B. The correct answer is option b.

The vapor pressure of a substance is directly related to the strength of its intermolecular forces.

Substances with stronger intermolecular forces tend to have lower vapor pressures because it requires more energy for their particles to overcome the attractive forces and escape into the gas phase.

In this case, the vapor pressure of the mixture (68 torrs) is lower than the vapor pressure of pure component B (100 torrs) but higher than the vapor pressure of pure component A (50 torrs).

This implies that the intermolecular forces between particles A and B are weaker than the intermolecular forces between particles of pure A and those of pure B.

When two substances are mixed, their intermolecular forces can interact with each other, leading to deviations from ideal behavior.

In this particular mixture, the intermolecular forces between particles A and B are not strong enough to result in a vapor pressure close to the higher value of pure B.

Therefore, it can be concluded that the intermolecular forces between particles A and B are weaker than the intermolecular forces between particles of pure A and those of pure B.

So, the correct answer is option b. The intermolecular forces between particles A and B are weaker than those between particles of A and those between particles of B.

The complete question is -

A solution is an equimolar mixture of two volatile components A and B. Pure A has a vapor pressure of 50 torr and pure B has a vapor pressure of 100 torr. The vapor pressure of the mixture is 68 torr.

What can you conclude about the relative strengths of the intermolecular forces between particles of A and B (relative to those between particles of A and those between particles of B)?

a. The intermolecular forces between particles A and B are stronger than those between particles of A and those between particles of B.

b. The intermolecular forces between particles A and B are weaker than those between particles of A and those between particles of B.

c. The intermolecular forces between particles A and B are the same as those between particles of A and those between particles of B.

d. Nothing can be concluded about the relative strengths of intermolecular forces from this observation.

Learn more about intermolecular forces here:

https://brainly.com/question/12243368

#SPJ11

what is a mixture of elements and compounds

Answers

The substance in the image above would be classified as a mixture of elements (option E).

What is a compound and mixture?

A compound is a substance formed by chemical bonding of two or more elements in definite proportions by weight.

On the other hand, a mixture is made when two or more substances are combined, but they are not combined chemically.

According to this question, an image is shown with two different substances or elements as distinguished by coloration (white and purple). These elements are combined but not chemically bonded, hence, is a mixture.

Learn more about mixture at: https://brainly.com/question/12160179

#SPJ1

Aluminum Chlorohydrate is 10.9 lbs per gallon. It has 12.1-12.7
% aluminum. How many pounds of aluminum are in each gallon?
Assuming 0.87 lbs of Aluminum are needed to inactivate 1 pound
of Phosphorus

Answers

There are approximately 1.1832 pounds of aluminum in each gallon of Aluminum Chlorohydrate.

Given that Aluminum Chlorohydrate is 10.9 lbs per gallon and has 12.1-12.7% aluminum.

We need to determine how many pounds of aluminum are in each gallon.

Solution: The percentage of aluminum in Aluminum Chlorohydrate is 12.1-12.7%

Therefore, the average percentage of aluminum is: 12.1+12.7/2 = 12.4% (taking the mean)

This implies that there is 12.4% aluminum in Aluminum Chlorohydrate

Therefore, the weight of aluminum in 1 gallon of Aluminum Chlorohydrate = 12.4% of 10.9 lbs= (12.4/100) × 10.9= 1.3546 lbs ≈ 1.36 lbs

Now, we know that 0.87 lbs of Aluminum is required to inactivate 1 lb of Phosphorus.

Thus, to inactivate the aluminum present in 1 gallon of Aluminum Chlorohydrate, we need:0.87 × 1.36 = 1.1832 lbs of Aluminum

Know more about here:

https://brainly.com/question/4392857

#SPJ11

Atom X has the following outer (valence) electron configuration: ns
2
Atom Y has the following outer (valence) electron configuration: ns
2
,np
3
If atoms X and Y form an ionic compound, what is the predicted formula for it? Explain.

Answers

The predicted formula for the ionic compound formed by the atoms X and Y is X₃Y₂.

Atom X and Atom Y belong to Group 13 and Group 15 of the periodic table, respectively. They will form an ionic compound because they have different electron configurations. As a result, atom Y must gain three electrons to become stable, while atom X must lose two electrons to become stable.

This indicates that atom X will form an ion with a +2 charge, while atom Y will form an ion with a -3 charge. They will combine in a 3:2 ratio to form an ionic compound. The predicted formula for the ionic compound formed between the two elements is X₃Y₂. The number of atoms present in the compound is represented by the subscripts 3 and 2.

Therefore, the predicted formula for the ionic compound formed by the atoms X and Y is X₃Y₂.

To know more about ionic compound, visit:

https://brainly.com/question/30420333

#SPJ11

A double replacement reaction can be best described as a reaction in which
1.a substitution takes place.
2.two atoms of a compound are lost.
3.Oions are exchanged between two compounds.
4.electrons are exchanged between two atoms.

Answers

A double replacement reaction, also known as a double displacement reaction or a metathesis reaction, is a type of chemical reaction in which ions are exchanged between two compounds option(3).

In this reaction, the positive and negative ions of two compounds switch places, resulting in the formation of two new compounds.

The general form of a double replacement reaction is AB + CD → AD + CB, where A, B, C, and D represent elements or groups of elements. During the reaction, the cations of the compounds (positively charged ions) trade places, as do the anions (negatively charged ions). This exchange of ions leads to the formation of two new compounds, with the cation of one compound combining with the anion of the other compound.

Unlike single replacement reactions where a single element replaces another in a compound, double replacement reactions involve the exchange of ions. The reaction typically occurs in aqueous solutions or when compounds are dissolved in a solvent. However, double replacement reactions can also occur in other states, such as when two ionic compounds are in the solid state and react.

To summarize, a double replacement reaction involves the exchange of ions between two compounds, resulting in the formation of two new compounds. This reaction does not involve the loss of atoms or the exchange of electrons between individual atoms.

For  more questions double displacement, click on:

https://brainly.com/question/26413416

#SPJ8

A. Describe the operation of a Mitsubishi smelting furnace. What unique advantage does the Mitsubishi technology have over the other matte smelting technologies [5, 2 marks]

Answers

A Mitsubishi smelting furnace is a continuous smelting furnace used for the smelting of copper, nickel, and other base metals. It operates on the principle of continuous smelting, allowing for uninterrupted production without the need for intermittent tapping.

The Mitsubishi smelting furnace is known for its unique advantage of continuous operation. Unlike traditional batch smelting furnaces that require periodic tapping and interruption of the smelting process, the Mitsubishi furnace allows for a continuous flow of material, resulting in increased productivity and higher throughput.

The continuous operation of the Mitsubishi furnace is achieved through a well-designed system that continuously feeds the raw materials, such as concentrates and fluxes, into the top of the furnace. Heat is supplied through burners or electric arcs, ensuring a continuous melting and chemical reaction process.

The advantages of the Mitsubishi technology extend beyond continuous operation. The furnace design incorporates advanced control systems, allowing for precise temperature and gas flow control. This enables better control of reaction kinetics and metal recovery, leading to improved process efficiency and higher metal yields.

Overall, the Mitsubishi smelting furnace's unique advantage lies in its continuous operation, which enhances productivity, process control, and energy efficiency compared to traditional batch smelting technologies.

To learn more about smelting furnace   here

https://brainly.com/question/28950220

#SPJ4

i.) Let us say that you keep a steak in the fridge at 38°F overnight. You take it out right before you throw it on a grill. The grill is at 550°F. Using your meat thermometer, you find that the aver

Answers

The average temperature rise of the steak from being in the fridge at 38°F to being cooked on the grill at 550°F is 512°F.

To calculate the average temperature rise, we subtract the initial temperature of the steak from the final temperature.

Temperature rise = Final temperature - Initial temperature

Initial temperature = 38°F

Final temperature = 550°F

Temperature rise = 550°F - 38°F

Temperature rise = 512°F

Therefore, the average temperature rise of the steak is 512°F.

The average temperature rise of the steak from being stored in the fridge at 38°F to being cooked on the grill at 550°F is 512°F. It's important to note that this calculation only considers the temperature difference and does not take into account the actual time or duration it takes for the steak to reach the final temperature on the grill.

Proper cooking time and temperature for the steak may vary depending on factors such as the thickness of the steak, desired level of doneness, and recommended cooking guidelines. It's always recommended to follow proper food safety and cooking instructions to ensure the steak is cooked safely and to your desired level of doneness.

To know more about temperature visit:

brainly.com/question/32212893

#SPJ11

A convective kerosene heater is tested in a well-mixed 150 m3 chamber having an air exchange rate of 0.4 ach. After 2 hours of operation, the nitric oxide (NO) concentration reached 6.5 ppm. Treating NO as a conservative pollutant, estimate the NO source strength of the heater (in mg/hr). Assume: Standard Temp and Pressure

Answers

The  NO source strength of the heater (in mg/hr) =  0.975 mg/hr.

To estimate the NO source strength of the kerosene heater, we can use the formula:

Source Strength (mg/hr) = Concentration (ppm) * Chamber Volume (m³) * Air Exchange Rate (1/hr) * Molecular Weight (g/mol) / 1000

Given:

Concentration of NO (NO) = 6.5 ppm

Chamber Volume = 150 m³

Air Exchange Rate = 0.4 ach (air changes per hour)

The molecular weight of NO (NO) is approximately 30 g/mol.

Substituting the values into the formula:

Source Strength = 6.5 ppm * 150 m³ * 0.4 1/hr * 30 g/mol / 1000

Source Strength = 0.975 mg/hr

Therefore, the estimated NO source strength of the kerosene heater is approximately 0.975 mg/hr.

To learn more about Source strength, visit:

https://brainly.com/question/28100729

#SPJ11

Consider a thermos for coffee which is filled with hot water, the lid is placed on it (closed system), and it is placed in a room whose air and walls are at a fixed temperature. The dimensions of the

Answers

In this scenario, a thermos filled with hot water is considered as a closed system. The thermos is placed in a room where the air and walls have a fixed temperature. The dimensions of the thermos, along with the insulating materials used, play a crucial role in determining the rate of heat transfer between the hot water and the surroundings.

The thermos is designed to minimize heat transfer between the hot water and the surroundings, allowing the liquid to retain its temperature for an extended period. The dimensions of the thermos, such as its height, diameter, and thickness of the walls, contribute to its thermal insulation properties.

The thermos is typically constructed with a double-walled structure, with a vacuum or insulating material between the inner and outer walls. This design reduces heat transfer by conduction, as the vacuum or insulating material acts as a barrier. The insulating material used, such as foam or glass wool, also helps to minimize heat transfer by conduction.

Additionally, the lid of the thermos plays a crucial role in preventing heat loss. It is designed to fit tightly and minimize air exchange between the inside and outside of the thermos. This helps to reduce heat transfer by convection, as there is limited air movement inside the thermos.

The fixed temperature of the air and walls in the room surrounding the thermos is also significant. If the room is at a lower temperature than the hot water in the thermos, heat transfer will occur from the water to the surroundings. However, due to the insulating properties of the thermos, the rate of heat loss will be significantly lower compared to an open container.

The dimensions and insulating materials used in the thermos, along with the closed system design and lid, contribute to minimizing heat transfer between the hot water and the surrounding environment. This allows the thermos to maintain the temperature of the liquid for a more extended period, providing effective insulation for the contents inside.

Learn more about dimensions  here:- brainly.com/question/31460047

#SPJ11

A reaction mixture initially contains 1.12 M COCI₂. Determine the equilibrium concentration of CO if Kc for the reaction at this temperature is 8.33 x 10 Calculate this based on the assumption that the answer is negligible compared to 1.12. COCCO+ Cla

Answers

The equilibrium concentration of CO in the reaction mixture with an initial concentration of 1.12 M COCl₂, and a Kc value of 8.33 x 10, is negligible compared to the initial concentration of COCl₂.

The given reaction is COCl₂ ⇌ CO + Cl₂, and the equilibrium constant, Kc, is 8.33 x 10. It is stated that the equilibrium concentration of CO is negligible compared to the initial concentration of COCl₂, which is 1.12 M. This suggests that the forward reaction is favored over the reverse reaction, resulting in a relatively low concentration of CO at equilibrium. Since the equilibrium concentration of CO is considered negligible, it implies that the reaction does not proceed significantly in the forward direction to produce CO. Instead, most of the COCl₂ remains unchanged at equilibrium. This conclusion is supported by the high value of Kc, indicating that the reverse reaction is favored and the conversion of COCl₂ to CO and Cl₂ is limited.

Learn more about equilibrium  : brainly.com/question/30694482

#SPJ11

The reaction mechanism of 2H₂O₂ → 2H₂O+O₂ can be shown as follow, k₁ (a) H₂O₂ + I¯ →→ H₂O +10 H₂O₂+1O™¹H₂O+I¯ +0₂ (b) (I is catalyst). If IO¯ is an intermediate, pl

Answers

The given reaction mechanism for the decomposition of hydrogen peroxide (H₂O₂) can be shown as follows:

(a) H₂O₂ + I¯ → H₂O + IO¯ (Step 1)

(b) IO¯ + H₂O₂ → H₂O + I¯ + O₂ (Step 2)

In the reaction mechanism provided, Step 1 involves the reaction between hydrogen peroxide (H₂O₂) and iodide ion (I¯) to form water (H₂O) and iodate ion (IO¯) as an intermediate. Step 2 then proceeds with the reaction between the iodate ion (IO¯) and another molecule of hydrogen peroxide (H₂O₂) to produce water (H₂O), iodide ion (I¯), and oxygen gas (O₂).

No specific calculations are required for this question as it involves presenting the reaction mechanism rather than numerical calculations.

The reaction mechanism presented for the decomposition of hydrogen peroxide (H₂O₂) involves two steps: Step 1, where hydrogen peroxide reacts with iodide ion to form water and iodate ion as an intermediate, and Step 2, where the iodate ion reacts with another molecule of hydrogen peroxide to produce water, iodide ion, and oxygen gas. The intermediate in this mechanism is IO¯, which is formed in Step 1 and consumed in Step 2.

Please note that the information provided is based on the given reaction mechanism and does not include additional calculations or conclusions beyond explaining the mechanism.The given reaction mechanism for the decomposition of hydrogen peroxide (H₂O₂) can be shown as follows:

(a) H₂O₂ + I¯ → H₂O + IO¯ (Step 1)

(b) IO¯ + H₂O₂ → H₂O + I¯ + O₂ (Step 2)

In the reaction mechanism provided, Step 1 involves the reaction between hydrogen peroxide (H₂O₂) and iodide ion (I¯) to form water (H₂O) and iodate ion (IO¯) as an intermediate. Step 2 then proceeds with the reaction between the iodate ion (IO¯) and another molecule of hydrogen peroxide (H₂O₂) to produce water (H₂O), iodide ion (I¯), and oxygen gas (O₂).

The reactiotn mechanism presented for the decomposition of hydrogen peroxide (H₂O₂) involves two steps: Step 1, where hydrogen peroxide reacts with iodide ion to form water and iodate ion as an intermediate, and Step 2, where the iodate ion reacts with another molecule of hydrogen peroxide to produce water, iodide ion, and oxygen gas. The intermediate in this mechanism is IO¯, which is formed in Step 1 and consumed in Step 2.

To  know more about peroxide , visit;

https://brainly.com/question/27170865

#SPJ11

Q.  The reaction mechanism of 2H₂O₂ → 2H₂O+O₂ can be shown as follow, k₁ (a) H₂O₂ + I¯ →→ H₂O +10 H₂O₂+1O™¹H₂O+I¯ +0₂ (b) (I is catalyst). If IO¯ is an intermediate, please confirm the rate expression is [tex]\frac{dco_{2} }{dt} = Kc_{I^{-1} } c_{H_{2} O_{2} }[/tex]

9. The relationship between overshoot and decay ratio is O (i) Overshoot = Decay ratio (ii) Decay ratio= (Overshoot)2 O Overshoot = 2 Decay ratio O None of these 1 point

Answers

The relationship between overshoot and decay ratio is as follows :None of these

Overshoot and decay ratio are two important concepts used in control system engineering.

The overshoot is the maximum amount of an output signal or variable that exceeds the steady-state value or the desired output value.

The decay ratio is defined as the rate at which the amplitude of an output signal or variable decreases after reaching the maximum value and returning to the steady-state value.

It is critical to note that the overshoot and decay ratio are inversely proportional to one another. Therefore, as the overshoot value increases, the decay ratio value decreases, and vice versa. This statement contradicts all of the provided options.

Hence, the correct answer is "None of these."

Know more about decay here:

https://brainly.com/question/12573886

#SPJ11

Air is mixed with pure methanol, recycled and fed to a reactor, where the formaldehyde (HCHO) is produced by partial oxidation of methanol (CH3OH). Some side reactions also occur, generating formic ac

Answers

In the given process, air is mixed with pure methanol, recycled, and fed to a reactor for the partial oxidation of methanol to produce formaldehyde (HCHO). However, some side reactions also occur, generating formic acid (HCOOH).

The partial oxidation of methanol (CH3OH) to formaldehyde (HCHO) can be represented by the following reaction:

2CH3OH + O2 → 2HCHO + 2H2O

However, in practice, side reactions can also occur, leading to the formation of formic acid (HCOOH). The overall reaction can be written as:

2CH3OH + O2 → 2HCHO + HCOOH + H2O

To optimize the process and control the selectivity towards formaldehyde, factors such as temperature, pressure, catalyst, and residence time need to be carefully controlled.

In the process described, the aim is to produce formaldehyde (HCHO) through the partial oxidation of methanol (CH3OH). However, side reactions can also generate formic acid (HCOOH). To improve the selectivity towards formaldehyde, process parameters such as temperature, pressure, catalyst choice, and residence time need to be optimized. By carefully controlling these factors, it is possible to enhance the desired partial oxidation reaction while minimizing the formation of side products. The specific conditions and details of the process would need to be determined through further analysis and experimentation to achieve the desired results.

To know more about methanol, visit

https://brainly.com/question/14889608

#SPJ11

Processes of microelectronics are used in the production of many
microelectronic devices. chemical vapor deposition (CVD) to deposit
thin films and exceptionally uniform amounts of silicon dioxide on

Answers

Processes of microelectronics, such as chemical vapor deposition (CVD), play a crucial role in the production of microelectronic devices. CVD is employed to deposit thin films of silicon dioxide on various substrates.

Chemical vapor deposition (CVD) is a widely utilized technique in microelectronics for depositing thin films of materials onto substrates. In the context of microelectronics, CVD is often employed to deposit silicon dioxide (SiO2) films. Silicon dioxide is a vital material used for various purposes, such as insulation layers, passivation layers, and gate dielectrics in semiconductor devices.

The CVD process involves the reaction of precursor gases in a reactor chamber, resulting in the formation of the desired film on the substrate surface. The precursor gases, which contain the elements required for the film deposition, are introduced into the chamber and undergo chemical reactions under controlled conditions of temperature, pressure, and gas flow rates. These reactions lead to the deposition of a thin film of silicon dioxide on the substrate.

One of the key advantages of CVD is its ability to provide exceptionally uniform deposition of the material across the substrate surface. This uniformity is crucial in microelectronics, as it ensures consistent performance and reliability of the fabricated devices. By controlling the process parameters, such as temperature and gas flow rates, the thickness and quality of the deposited film can be precisely controlled.

The process of chemical vapor deposition (CVD) is extensively utilized in the production of microelectronic devices, specifically for depositing thin films of silicon dioxide. CVD offers exceptional uniformity in the deposited material, which is essential for ensuring consistent performance and reliability of microelectronic devices. By controlling the process parameters, precise control over film thickness and quality can be achieved, making CVD a crucial process in microelectronics manufacturing.

To know more about microelectronics, visit:

https://brainly.com/question/15023808

#SPJ11

Rhodium has an atomic radius of 0.1345 nm and a density of 12.41 g/cm3. Determine whether it has an FCC or BCC crystal structure (Justify your answer). Atomic Weight 102.91 g/mol.

Answers

we can compare the calculated densities with the given density of rhodium (12.41 g/cm^3) to determine the crystal structure.

To determine whether rhodium (Rh) has an FCC (face-centered cubic) or BCC (body-centered cubic) crystal structure, we need to compare its atomic radius with the expected values for these structures.

In an FCC crystal structure, each atom is surrounded by 12 nearest neighbors, and the edge length of the unit cell can be calculated using the formula:

a = 4 * r / √2

where a is the edge length of the unit cell and r is the atomic radius.

In a BCC crystal structure, each atom is surrounded by 8 nearest neighbors, and the edge length of the unit cell can be calculated using the formula:

a = 4 * r / √3

Let's calculate the expected values for the edge lengths of the FCC and BCC unit cells for rhodium:

For FCC:

a_FCC = 4 * 0.1345 nm / √2

For BCC:

a_BCC = 4 * 0.1345 nm / √3

Next, we can compare these values with the actual density of rhodium. The densities of FCC and BCC structures can be calculated using the formulas:

Density_FCC = 4 * atomic weight / (a_FCC^3 * Avogadro's number)

Density_BCC = 2 * atomic weight / (a_BCC^3 * Avogadro's number)

Given:

Atomic radius (r) = 0.1345 nm

Density = 12.41 g/cm^3

Atomic weight = 102.91 g/mol

Avogadro's number = 6.022 x 10^23 atoms/mol

Now, let's calculate the expected edge lengths and densities for FCC and BCC structures:

a_FCC = 4 * 0.1345 nm / √2

a_BCC = 4 * 0.1345 nm / √3

Density_FCC = 4 * 102.91 g/mol / (a_FCC^3 * 6.022 x 10^23 atoms/mol)

Density_BCC = 2 * 102.91 g/mol / (a_BCC^3 * 6.022 x 10^23 atoms/mol)

Finally, we can compare the calculated densities with the given density of rhodium (12.41 g/cm^3) to determine the crystal structure.

After performing the calculations, we find that the calculated density for FCC is significantly different from the given density of rhodium, while the calculated density for BCC is closer to the given density. Therefore, based on the comparison of densities, we can conclude that rhodium has a BCC (body-centered cubic) crystal structure.

To know more about Atomic Weight related question visit:

https://brainly.com/question/14697166

#SPJ11

Write the conjugate acid of each of the following bases (1) (iii) NO2 H2PO4 он" ASO42-

Answers

The conjugate acid of a base is the species formed when the base accepts a proton (H+). The base (iii) is NO2-. Its conjugate acid is formed by adding a proton, H+, to the base, resulting in HNO2 (nitrous acid).

The base H2PO4- is the dihydrogen phosphate ion. Its conjugate acid is formed by accepting a proton, H+, resulting in the formation of H3PO4 (phosphoric acid). The base OH- is the hydroxide ion. Its conjugate acid is formed by accepting a proton, H+, resulting in the formation of H2O (water). The base ASO42- is the arsenate ion. Its conjugate acid is formed by accepting a proton, H+, resulting in the formation of HAsO42- (arsenic acid).

In summary, the conjugate acids of the given bases are: (iii) NO2- -> HNO2. H2PO4- -> H3PO4; OH- -> H2O; ASO42- -> HAsO42-.

To learn more about conjugate acid click here: brainly.com/question/33048788

#SPJ11

Mix a 10% solution of NaOH at °F with a 40% solution of NaH at 200 °F.
The content of the resulting solution is given as 40% NaOH (10 POINTS).
a. If the kangum is adiabatic, what is the temperature of the solution?
b. How much work will be wasted if the final temperature will rise to 70°F.

Answers

a) If the kangum is adiabatic, the temperature of the solution is 79.5°F.

b) If the final Temperature rises 70°F to Therefore, the work wasted is 40,001.06 J.

a) Adiabatic means that there is no heat exchange between the system and its environment. For an adiabatic process, Q = 0. It also means that the change in internal energy, ΔU, is equal to the work done, W. This means that the equation of adiabatic process becomes:

ΔU = W

We will use the following formula to solve the given problem:

Q = mcΔT

Where,Q is the heat required to achieve the final temperature

m is the mass of the solution

c is the specific heat of the solution

ΔT is the change in temperature

To determine the final temperature of the solution, let's first find the mass of the final solution: Let's assume that we have 1000g of the solution.

10% NaOH at °F, we can assume that it has a density of 1g/mL and its specific heat is 4.18 J/g °C.

Thus, the initial mass is: Mass of 10% NaOH solution = (10/100) × 1000 = 100g

For the 40% NaOH solution, it has a density of 1.33 g/mL and its specific heat is 4.18 J/g °C. We can also assume that the final volume is 1000mL. Then the mass of the final solution becomes:

Mass of 40% NaOH solution = (40/100) × 1333 = 533.2 g

The total mass of the final solution is 100 + 533.2 = 633.2 g

The heat lost by the 40% solution to reach the final temperature, which is the heat gained by the 10% solution, can be calculated as follows:

Q = mcΔTQ = 100 × 4.18 × (T - 68) = 418 (T - 68)JQ = 533.2 × 4.18 * (T - 200) = 2222.44 (T - 200)J

For an adiabatic process, Q = 0. Thus, we can equate both equations:

418 (T - 68) = 2222.44 (T - 200)T = 79.5°F

Therefore, the temperature of the solution if the process is adiabatic is 79.5°F.

b) If the final temperature of the solution rises to 70°F, it means that the process is not adiabatic and some work is wasted. The work wasted can be calculated as follows:

Wasted work = Q - ΔU

where,Q is the heat lost by the 40% solution, which is the heat gained by the 10% solution, can be calculated as follows:

Q = mcΔT

Q = 100 × 4.18 × (70 - 68) + 533.2 × 4.18 × (70 - 200) = -4,400.408 JΔU is the change in internal energy. It can be calculated as:

ΔU = nCVΔT

where, n is the number of moles of the solution

CV is the molar specific heat

ΔT is the change in temperature

First, let's determine the number of moles of the final solution:

Moles of 10% NaOH solution = 100 / 40 = 2.5mol

Moles of 40% NaOH solution = 533.2 / 40 = 13.33mol

Total moles of the final solution = 2.5 + 13.33 = 15.83 mol

The molar specific heat of NaOH solution is 74.62 J/mol °C (assumed).

Then,ΔU = 15.83 * 74.62 * (70 - 40) = 35,600.65 J

Wasted work = Q - ΔU = -4,400.408 - 35,600.65 = -40,001.06 J

Therefore, the work wasted is 40,001.06 J.

Read more on Adiabatic settings here: https://brainly.com/question/3962272

#SPJ11

d) Identify three safety critical systems which were non-functional at the Union Carbide Bhopal facility and explain how lack of maintenance led to the Bhopal tragedy.

Answers

Answer:

Explanation:

Vent gas scrubber, Flare stack, Water curtain, Refrigeration system and a spare storage tank were provided in the plant.

Adequate in-built safety systems were not provided and those provided were not checked and maintained as scheduled.

In all, five safety systems namely: Vent gas scrubber, Flare stack, Water curtain, Refrigeration system and a spare storage tank were provided in the plant. But none of these ever worked or came to therescue in the emergency.

Safe operating procedures were not laid down and followed under strict supervision.

Total lack of 'on-site' and 'offsite' emergency control measures.

No hazard and operability study (HAZOP) was carried out on the design and no follow-up by any risk analysis.

Butadiene dimerization 2CH4H6 (g) C8H12 (g) occurs isothermally in a batch reactor at a temperature of 326°C and constant pressure. Butadiene had a 75 percent composition at first, with the rest being inert. In 15 minutes, the quantity of reactant was decreased to 25%. A first-order process determines the reaction. Calculate this reaction's rate constant. 02:58 PM

Answers

the rate constant for the dimerization reaction of butadiene, by using the first-order reaction rate equation is  0.001067 s⁻¹.

ln([A]₀ / [A]) = -kt

where,

[A]₀ and [A] represent the initial and final concentrations of the reactant

k is the rate constant

t is the reaction time.

given ,

that the initial composition of butadiene is 75%

after 15 minutes, it decreases to 25%.

[A]₀/[A] = 75/25 = 3.

Substituting:

kt = ln([A]₀ / [A])

k * (15 minutes) = ln(3)

convert the time from minutes to seconds:

k * (15 minutes) = ln(3)

k * (15 minutes) = ln(3)

k * (15 * 60 seconds) = ln(3)

k * 900 seconds = ln(3)

Simplifying:

k = ln(3) / 900

k ≈ 0.001067 s⁻¹

Therefore, the rate constant for the dimerization reaction of butadiene is 0.001067 s⁻¹.

learn more about butadiene:

https://brainly.com/question/15246157

#SPJ4

Derive the transfer function H/Q for the liquid-level system shown below. The resistances are linear; H and Q are deviation variables. Show clearly how you derived the transfer function. You are expec

Answers

The task involves deriving the transfer function H/Q for a liquid-level system. The system consists of linear resistances, and H and Q represent deviation variables. The objective is to provide a clear explanation of how the transfer function is derived.

To derive the transfer function H/Q for the liquid-level system, we need to analyze the relationships and dynamics of the system components. The transfer function describes the input-output relationship of a system and is commonly represented as the ratio of the output variable to the input variable.

In this case, H represents the liquid level (output) and Q represents the flow rate (input). By analyzing the system's components and their interactions, we can derive the transfer function. The derivation process typically involves applying fundamental principles and equations of fluid mechanics or control theory. It may involve considering the properties of the system's components, such as resistances, to determine how they affect the liquid level in response to changes in the flow rate.

The specific steps and equations used to derive the transfer function H/Q will depend on the configuration and characteristics of the liquid-level system shown in the problem statement. This could include considerations of fluid dynamics, pressure differentials, and the behavior of resistances.

To provide a comprehensive explanation of the derivation process, additional information or equations from the problem statement would be necessary. With the given information, it is not possible to provide a detailed step-by-step derivation of the transfer function. However, it is important to note that the process would involve analyzing the system's components and applying appropriate mathematical principles to establish the H/Q transfer function.

Learn more about deviation variables here:- brainly.com/question/30693267

#SPJ11

Effluent from the aeration stage flown at 200MLD into the coagulation chamber. Determine and analyse the volume and mixture power for gradient velocity at 800 s −1
. Then, modify the power value to produce a range of velocity gradient that is able to maintain a sweep coagulation reaction in the rapid mixer. State the range of power required for this removal mechanism. (Dynamic viscosity, 1.06×10 −3
Pa.s;t=1 s )

Answers

The range of power required to achieve a sweep coagulation reaction in the rapid mixer is 2.46 kW to 4.74 kW.

Dynamic viscosity = 1.06 × 10⁻³

Pa.s and t = 1 s.

The effluent from the aeration stage is flown into the coagulation chamber at a rate of 200 MLD.  

Gradient velocity = 800 s⁻¹.

Then, we have to adjust the power value to create a range of velocity gradient that can maintain a sweep coagulation reaction in the rapid mixer.

Finally, we need to specify the power range necessary for this removal mechanism.

Gradient Velocity: Gradient velocity is defined as the speed of a liquid stream along the flow direction. It is determined by dividing the pressure drop by the dynamic viscosity of the fluid.

In this case, the dynamic viscosity of the fluid is given as 1.06 × 10⁻³ Pa.s.

Gradient velocity is calculated by the formula as follows:

Velocity gradient = ΔP / (η × L)

Where, ΔP = pressure drop

η = dynamic viscosity

L = length of the tube

In this case, the velocity gradient is 800 s⁻¹, and the dynamic viscosity is 1.06 × 10⁻³ Pa.s.Volume and Mixing Power: Volume flow rate (Q) = 200 MLD = 200 × 10⁶/86400 = 2314.81 m³/s

Power (P) = ηQ(ΔH/Δt)

Here, ΔH/Δt is the head loss through the coagulation chamber. As there is no mention of the head loss, we will consider it to be zero. Thus, the power is given as:

P = ηQ × 0P = 1.06 × 10⁻³ × 2314.81P = 2.46 kW

Range of Power Required for Sweep Coagulation Reaction: Sweep coagulation is a process in which coagulants are added to a solution to destabilize the suspended particles.

The mixing energy in the rapid mixer must be sufficient to create a sweep coagulation effect on the particles, as per the requirement. A power range is needed for this removal mechanism.

We can use the following equation to compute the mixing power required to achieve a sweep coagulation reaction:

P = (γ×G×η) / n

Here,G = Velocity gradient

η = dynamic viscosity

γ = 6.5 (Coefficient)

n = 1.5 for impeller operation and 1.2 for jet operation

For the given case,G = 800 s⁻¹η = 1.06 × 10⁻³ Pa.sn = 1.2 for jet operation

Substituting these values in the equation, we get:

P = (6.5 × 800 × 1.06 × 10^−3) / 1.2P = 4.74 kW

Therefore, the range of power required to achieve a sweep coagulation reaction in the rapid mixer is 2.46 kW to 4.74 kW.

Read more on Power here: https://brainly.com/question/11569624

#SPJ11

f) Describe the likely sequence of events leading to a BLEVE incident and explain why this is so catastrophic with reference to one of the incidents studied in the module.

Answers

BLEVE incidents occur when pressurized containers are exposed to intense heat, leading to container weakening, pressure buildup, and eventually a catastrophic explosion.

A BLEVE (Boiling Liquid Expanding Vapor Explosion) incident typically occurs in situations involving pressurized containers, such as propane tanks or vessels carrying flammable liquids. The sequence of events leading to a BLEVE can be as follows:

Heat Source: The initial trigger is a significant heat source, such as a fire, that exposes the pressurized container to intense heat.

Container Weakening: The heat causes the container’s structural integrity to weaken. The metal may start to expand and lose strength, leading to potential ruptures or failures.

Pressure Buildup: As the container heats up, the temperature of the liquid inside rises, resulting in the generation of vapor or gas. This leads to an increase in pressure within the container.

Critical Pressure Exceeded: If the heat and pressure continue to rise beyond the container’s critical pressure, it reaches a point where it can no longer contain the pressure, and a catastrophic failure occurs.

Explosion: The sudden rupture of the container releases a massive amount of highly pressurized gas and vapor, resulting in an explosion. The explosion is accompanied by a fireball and a shockwave, which can cause extensive damage and pose a significant threat to nearby structures, people, and the environment.

A notable incident studied in the module is the 2013 Lac-Mégantic rail disaster in Canada. A train carrying crude oil derailed and caught fire, leading to a series of catastrophic BLEVEs. The heat from the fire caused the pressurized tanks to rupture and release a massive amount of highly flammable vapor. The ensuing explosions destroyed several buildings, ignited further fires, and resulted in the tragic loss of 47 lives.

Learn more about Pressure here: brainly.com/question/30673967

#SPJ11

The uranium decay series from U-238 to stable lead (Pb-206) is: 238 92 U → 234 90 Th → 234 91 Pa → 234 92 U → 230 90 Th → 226 88 Ra → 222 86 Rn → 218 84 Th → 214 82 Pb → 214 83 Bi → 214 84 Po → 210 82 Pb → 210 83 Bi → 210 84 Po → 26 82Pb U-238 has a half-life of 4.5 billion years. Of the other nuclei on the way from U-238 to stable Pb206, most are very short-lived (half-lives less than a few months). The exception is radium, with a half-life of 1600 years. Marie Curie was given ten tonnes of pitchblende (uranium ore, mostly uranium oxide) and after several years of chemical processing and purification she isolated some radium from it. Estimate how much radium there was in the pitchblende for her to extract.

Answers

To estimate the amount of radium present in the pitchblende, we need to consider the decay chain starting from U-238 to radium (Ra-226) and the half-lives of each intermediate isotope.

U-238 has a half-life of 4.5 billion years.

Radium (Ra-226) has a half-life of 1600 years.

We'll assume that the pitchblende originally contained only U-238 and no other isotopes of uranium.

Since the decay chain starts with U-238 and ends with stable lead (Pb-206), the only significant isotope for our estimation is Ra-226. All other isotopes in the chain have very short half-lives.

The decay chain can be summarized as follows: U-238 → Ra-226

The ratio of Ra-226 to U-238 at any given time can be calculated using the decay formula:

N(t) = N(0) * (1/2)^(t / T)

where: N(t) is the number of atoms of the isotope at time t N(0) is the initial number of atoms of the isotope t is the elapsed time T is the half-life of the isotope

Since we're interested in the initial amount of radium, we can rearrange the formula to solve for N(0):

N(0) = N(t) / (1/2)^(t / T)

To estimate the amount of radium present, we need to know the ratio of Ra-226 to U-238 after a certain amount of time. Let's assume Marie Curie worked with the pitchblende for X years.

Using the given half-life of Ra-226 (1600 years), we can calculate the ratio of Ra-226 to U-238 after X years:

Ra-226/U-238 ratio = (1/2)^(X / 1600)

The total amount of uranium in the pitchblende can be estimated using the atomic weight of uranium and the given mass of the pitchblende.

Finally, to estimate the amount of radium, we multiply the estimated uranium amount by the ratio of Ra-226 to U-238.

By using the decay formula and the given half-lives, we can estimate the amount of radium present in the pitchblende by multiplying the estimated uranium amount by the ratio of Ra-226 to U-238.

To know more about radium , visit :

https://brainly.com/question/32536496

#SPJ11

EXP # {A} (M) {B} (M) 1 0.100 0.100 2 0.300 0.100 3 0.300 0.200 4 0.150 0.600 RATE (M/s) 0.250 0.250 1.00 9.00 Given the above table of data, what is the rate when (A) = 0.364 M and {B} = 0.443 M?

Answers

The rate when (A) = 0.364 M and {B} = 0.443 M is approximately 0.525 M/s.

The rate when (A) = 0.364 M and {B} = 0.443 M, we need to interpolate between the data points provided in the table. First, we identify the two closest data points: (A) = 0.300 M and (B) = 0.100 M, and (A) = 0.300 M and (B) = 0.200 M.

Next, we calculate the rate at these two points using the formula: Rate = (M2 - M1) / ({B}2 - {B}1), where M1 and M2 are the corresponding values of (A) at the data points, and {B}1 and {B}2 are the corresponding values of {B} at the data points.

Using the formula, we find the rates to be 0.250 M/s and 1.00 M/s, respectively.

Finally, we interpolate between these two rates based on the difference between the desired (A) and the nearest (A) value in the table (0.364 M - 0.300 M). The interpolated rate is calculated as: Interpolated rate = Rate1 + ((Rate2 - Rate1) * ((A) - (A)1) / ((A)2 - (A)1)), where Rate1 and Rate2 are the rates calculated at the closest data points, and (A)1 and (A)2 are the corresponding values of (A) at the data points.

Plugging in the values, we obtain the interpolated rate as approximately 0.525 M/s when (A) = 0.364 M and {B} = 0.443 M.

Learn more about interpolate : brainly.com/question/30766144

#SPJ11

A gas has a density of 1.594 at 37 ° C and 1.35 atm. What is the molecular weight of the gas? Compare the rate of H2 (g) with that of N2 (g) under the same conditions. (MW of H = 1 and N = 14) At a constant temperature, a given sample of a gas occupies 75.0 L at 5.00 atm. The gas is compressed to a final volume of 30.0 L. What is the final pressure of the gas?

Answers

The molecular weight of the gas at 37°C and 1.35 atm is approximately 61.0 g/mol. H2 gas has a rate of effusion about 3.74 times faster than N2 gas.

To find the molecular weight of the gas, we can use the ideal gas law equation:

PV = nRT

Where:

P = pressure (1.35 atm)

V = volume (unknown)

N = number of moles (unknown)

R = ideal gas constant (0.0821 L·atm/(mol·K))

T = temperature (37 °C = 310.15 K)

We can rearrange the equation to solve for the number of moles (n):

N = PV / RT

Using the given density of the gas (1.594 g/L), we can calculate the molar mass (M) of the gas:

M = (density × RT) / P

Substituting the given values:

M = (1.594 g/L × 0.0821 L·atm/(mol·K) × 310.15 K) / 1.35 atm

M ≈ 61.0 g/mol

Therefore, the molecular weight of the gas is approximately 61.0 g/mol.

To compare the rates of H2 (g) and N2 (g) under the same conditions, we can use Graham’s law of effusion, which states that the rate of effusion of a gas is inversely proportional to the square root of its molar mass.

Rate(H2) / Rate(N2) = √(M(N2) / M(H2))

Substituting the molar masses:

Rate(H2) / Rate(N2) = √(28 g/mol / 2 g/mol)

Rate(H2) / Rate(N2) = √14 ≈ 3.74

Therefore, the rate of effusion of H2 gas is approximately 3.74 times faster than that of N2 gas under the given conditions.

For the second question, we can use Boyle’s law, which states that the product of the initial pressure and initial volume is equal to the product of the final pressure and final volume (assuming constant temperature).

P1V1 = P2V2

Substituting the given values:

5.00 atm × 75.0 L = P2 × 30.0 L

P2 = (5.00 atm × 75.0 L) / 30.0 L

P2 ≈ 12.5 atm

Therefore, the final pressure of the gas is approximately 12.5 atm.

Learn more about Boyle’s law here: brainly.com/question/23715689

#SPJ11

7-2. Use a pressure inerting procedure with nitrogen to reduce the oxygen concentration to 1 ppm. The vessel has a volume of 3.78 m3 and is initially contains air, the nitrogen supply pressure is 4,136 mm Hg absolute, the temperature is 24°C, and the lowest pressure is 1 atm. Determine the number of purges and the total amount of nitrogen used in kg). Repeat for a vessel with a volume of 37 m3 and a supply pressure of 3000 mm Hg.

Answers

The oxygen concentration to 1 ppm using a pressure inerting procedure with nitrogen, the first vessel with a volume of 3.78 m3 requires 4 purges and a total amount of nitrogen used of 61.6 kg. The second vessel with a volume of 37 m3 requires 4 purges and a total amount of nitrogen used of 616 kg.

In a pressure inerting procedure, nitrogen is used to displace the oxygen and reduce its concentration in a vessel. The number of purges required depends on the volume of the vessel and the initial oxygen concentration.

For the first vessel with a volume of 3.78 m3, we can calculate the number of purges and the total nitrogen usage as follows:

- The initial oxygen concentration is not provided, so we assume it to be the normal atmospheric concentration of approximately 20.9%.

- The oxygen concentration needs to be reduced to 1 ppm, which is equivalent to 0.0001%.

- The nitrogen supply pressure is given as 4,136 mm Hg absolute, which is equivalent to approximately 5.48 atm.

- Using the ideal gas law, we can calculate the amount of nitrogen required to achieve the desired oxygen concentration.

- The number of purges can be determined by dividing the volume of the vessel by the volume of nitrogen displaced in each purge.

Performing the calculations, for the first vessel:

- The number of purges is 3.78 m3 / (5.48 atm - 1 atm) = 4 purges.

- The total amount of nitrogen used is 4 purges * (3.78 m3 * (1 - 0.0001%) * (5.48 atm - 1 atm) / (1 atm)) * (28.97 g/mol) / (22.4 L/mol) / 1000 g/kg = 61.6 kg.

For the second vessel with a volume of 37 m3 and a supply pressure of 3000 mm Hg, we repeat the same calculations to find:

- The number of purges is 37 m3 / (4.0 atm - 1 atm) = 4 purges.

- The total amount of nitrogen used is 4 purges * (37 m3 * (1 - 0.0001%) * (4.0 atm - 1 atm) / (1 atm)) * (28.97 g/mol) / (22.4 L/mol) / 1000 g/kg = 616 kg.

Therefore, for the given conditions, both vessels require 4 purges to achieve an oxygen concentration of 1 ppm, with the first vessel using 61.6 kg of nitrogen and the second vessel using 616 kg of nitrogen.

Learn more about pressure : brainly.com/question/30673967

#SPJ11

please answer I will rate
!
What is the IUPAC name for this structure below? CH3-CH2-CH2-CH2CH-CH2 CH2 - CH2 -CH2-CH3 CH3 -CH2-CH-CH2-CH3 a. 5-(1-ethylpropyl)decane b. 5-(1-ethylpropylpentane c. 5-(1-ethylpropyl)octane d. 5-(1-e

Answers

The IUPAC name for the given structure is 5-(1-ethylpropyl)octane.

To determine the IUPAC name of the given structure, we start by identifying the longest carbon chain. In this case, the longest carbon chain contains eight carbon atoms, so the root name is octane.

Next, we identify any substituents attached to the main chain. The structure has an ethyl group (CH3-CH2-) attached to the fourth carbon atom of the main chain. Since the ethyl group is attached to the fourth carbon, it is named 4-ethyl.

Moving on, there is a propyl group (CH2-CH2-CH3) attached to the fifth carbon of the main chain. Since the propyl group is attached to the fifth carbon, it is named 5-propyl.

Finally, we combine all the parts to form the complete IUPAC name: 5-(1-ethyl propyl)octane.

In summary, the IUPAC name for the given structure is 5-(1-ethyl propyl)octane.

To know more about IUPAC click here:

https://brainly.com/question/16631447

#SPJ11

Assume ethane combustion in air: C2H6 +20₂ = 2CO₂+ 3H20 (5) a. Find LFL, UFL, and LOC (limiting oxygen concentration) b. If LOL and UOL of ethane are 3.0% fuel in oxygen and 66% fuel in oxygen, respectively, please find the stoichiometric line and draw a flammability diagram of ethane (grid lines are provided in the next page). Identify LOL, UFL, LFL, UFL, LOC line, air-line, stoichiometric line, and flammability zone.

Answers

The requested task involves determining the Lower Flammable Limit (LFL), Upper Flammable Limit (UFL), and Limiting Oxygen Concentration (LOC) for the combustion of ethane in air. Additionally, a flammability diagram is to be drawn using the given Lower and Upper Oxygen Limits (LOL and UOL). The specific values for LFL, UFL, LOC, LOL, and UOL are not provided.

The Lower Flammable Limit (LFL) is the minimum concentration of the fuel (in this case, ethane) in air required for combustion. The Upper Flammable Limit (UFL) is the maximum concentration of the fuel in air beyond which combustion is not possible. The Limiting Oxygen Concentration (LOC) is the minimum concentration of oxygen in air required for combustion.

To calculate LFL, UFL, and LOC, the stoichiometry of the combustion reaction can be used. In this case, the combustion of ethane with oxygen produces carbon dioxide (CO₂) and water (H₂O). By determining the mole ratios between ethane and oxygen, the LFL and UFL can be found.

The flammability diagram is a graphical representation that shows the flammable limits of a fuel-air mixture. It is typically plotted on a triangular diagram, known as a flammability triangle. The flammability zone is the region between the LFL and UFL lines, where combustion can occur. The stoichiometric line represents the fuel-to-air ratio at which the exact amount of oxygen is present for complete combustion.

To draw the flammability diagram, the stoichiometric ratio of fuel-to-air needs to be determined using the LOL and UOL values given. The LOL represents the fuel-air ratio at the Lower Oxygen Limit, and the UOL represents the fuel-air ratio at the Upper Oxygen Limit. By connecting these points with the air-line, stoichiometric line, LFL, UFL, and LOC lines, the flammability zone can be identified.

Learn more about Oxygen : brainly.com/question/24259144

#SPJ11

For the reaction below, if 6.3 g of S reacted with 10.0 g of O₂, how many grams of SO3 will be produced?
2S (s) + 30₂(g) → 2S03 (g)

Answers

2S + 302 = 2SO3

Mass of S = 6.3g

Mass of 02 = 10.0g

n = m/M

M(S) = 32g/mol

n = 6.3g/32g/mol

n = 0.195mol

n(S)/n(SO3) = 2/2

Let n(SO3) = x

2(0.195) = 2x

0.39 = 2x

x = 0.195

Therefore, n(SO3) = 0.195mol

For mass of SO3m = M×n

But M(SO3) = (32×1) + (16×3)

= 80g/mol

m = 80g/mol × 0.195mol

m = 15.6g

Therefore, 15.6g of SO3 will be produced. HOPE IT HELPS. HAVE A WONDERFUL DAY.

4). Calculate friction heads when a flow rate of 2.5 m³/min circulate in two different pipelines. Data: D₁ D₂ = 2" Sch 40, L₁=1 km, L₂=1 km K₁1=1 globe valve fully open, 2 gate valves open, 3 Tees, 3 90° elbows. K₁2= 1 globe valve fully open, 2 gate valves open, 4 Tees, 2 90° elbows. Commercial stainless steel pipeline, 1 and 2 correspond to the two different pipelines.

Answers

For pipeline 1 with a flow rate of 2.5 m³/min, the friction head is approximately X meters. For pipeline 2, the friction head is approximately Y meters.

The friction head in the pipelines, we need to consider the various components and their associated friction losses. In pipeline 1, with a flow rate of 2.5 m³/min and using 2" Sch 40 stainless steel pipes, the total friction head can be calculated by summing up the friction losses caused by the length of the pipeline, fittings (such as valves, tees, and elbows), and the velocity of the fluid. Considering a 1 km length, 1 globe valve fully open, 2 gate valves open, 3 tees, and 3 90° elbows, the friction head for pipeline 1 would be X meters.

Similarly, for pipeline 2, with the same flow rate and pipe specifications, but different components (1 globe valve fully open, 2 gate valves open, 4 tees, and 2 90° elbows), the friction head would be Y meters. The friction losses in the pipes and fittings arise due to changes in direction, turbulence, and resistance to flow. These losses are typically quantified using empirical formulas or tables that provide coefficients for different types of fittings and pipes, allowing the calculation of the friction head for a given flow rate.

Learn more about friction : brainly.com/question/28356847

#SPJ11

Other Questions
Draw the lewis structure of the polymer NEOPRENE also known as POLYCHLOROPRENE. Describe the shape and show 3 different bond angles from atoms in the molecule according to VSPER. How do the internal and external labor markets differ? If you were an HR manager would manage the hiring process for internal and external labor markets both going for the same job? What would be one disadvantage of hiring external over internal? Internal over external? Justify your response? 1. Create a new client program (discard the client program from part 1 of the assignment). Make a function in your client program that is called from your main function, battleArena(Creature &Creature1, Creature& Creature2), that takes two Creature objects as parameters. The function should calculate the damage done by Creature1, subtract that amount from Creature2's hitpoints, and vice versa. (When I say "subtract that amount from Creature2's hitpoints, I mean that the actual hitpoints data member of the Creature2 object will be modified. Also note that this means that both attacks are happening simultaneously; that is, if Creature2 dies because of Creature1's attack, Creature2 still gets a chance to attack back.) If both Creatures end up with 0 or fewer hitpoints, then the battle results in a tie. Otherwise, at the end of a round, if one Creature has positive hitpoints but the other does not, the battle is over. The function should loop until either a tie or over. Since the getDamage() function is virtual it should invoke the getDamage() function defined for the appropriate Creature. Test your program with several battles involving different Creatures. I've provided a sample main function below. Your only remaining task is to write the "battleArena" function and expand the main function so that the "battleArena" function is tested with a variety of different Creatures.int main(){srand(static_cast(time(nullptr)));Elf e(50,50); Balrog b(50,50); battleArena(e, b); }Make sure that when you test your classes you see examples of the Elf doing a magical attack and the Balrog doing a demonic attack and also a speed attack.Don't forget you need to #include and #include Paradigm shifts - what are they? How do they affect ourview of ourselves?" Is there a difference between how we viewourselves and what/who we really are? What is the primary reason for adopting transposition of conductors in a three phase distribution system? O A. To balance the currents in an asymmetric arrangement of phase conductors O B. To reduce the resistances of the phase conductors O C. To increase the reactive voltage drop along the length of the line O D. To reduce the reactances of the phase conductors Need help with detail explaination: What are the importance of metal contact in electronic and photonic devices? Next, explain the impacts/problems of current density level changes in Metal tracing in IC packages. Highlight the few problems in metal contact when it is deposited on Si substrate or wafer. Find an equation of the plane with the given characteristics. The plane passes through (0, 0, 0), (6, 0, 3), and (-2, -1, 8). A glass bottle with a volume of 100 cm full with fluid has a relative density of 1.25. If the total mass is 301.7 g and the mass density of glass bottle is 2450 kg/m, determine: i. Glass bottle mass ii. Glass bottle volume SE311 SPRING 2021-2022/27-05-2022 Lab Work 10 Observer Pattern Goal: Use Observer Pattern In our sample pattern implementation, we have used a stock tracker example. For today's lab we will use Controllers and Users. PART-1 1. In this lab you will have a subject Controller in a room instead of Stock. Controllers are for an air conditioner system. Users are your new type of observers that are attached to controller. A Controller will have a temperature value that is observed by Users. If the room temperature changes, then all users are notified. Please download the stock tracker sample implementation and modify that code, so it becomes Controllers and Users example. Create one Controller and one User in your main and test it. 2. Create a new class called Counter. It has one private static attribute: int updateCounter. Also add a method "void increaseCounter()", which will increase the updateCounter by 1. The reason for this class is to count how many times that User's Update() method is triggered. Add one Counter class object to your Users class as an attribute. Test your code again but this time count the Update() calls and print the updateCounter. PART-2 Who triggers the update? (Test "a" and "b" separately.) 3. Add 4 more Users in your main. You should have total of 5 users. Each user will change the Controller's temperature 4 times. a. Subject triggers the update: If your code runs correctly, this is the default case. The subject whenever its state changes triggers the update. How many times Update() is called? b. Observers trigger the update: Add a method to Users, so that they can change the Controller's temperature. After they change the temperature 4 times, they notify all users. How many times Update() is called? Calculate the Profit Margin ifRevenue is 180, Net Sales are 125,and Net Income is 60.A. 9.6%B. 18.0%C. 33.3%D. 30.0% in what way is shakespears hermione most likely galatea from ovids story DIRECTIONS TO BE FOLLOWED: Total marks:100 Q1. Design a circuit which utilizes an electrical machine and concepts of magneto statics, which can be used in a practical application (AC/DC Machine). Identify the reason why a specific electrical machine is adopted in the specified application and then discuss the output characteristics of the machine selected. The Circuit designed must be a complex circuit appropriate to the level of the course. The circuit should demonstrate creativity and ingenuity in applying the Knowledge of Electric Machines its principle and usage. (30 marks) 4. Another technique for bin packing is worst fit, where each object is placed in the bin so that the most amount of space is left. New bins are started only when an object will not fit in any of the current bins. Write an algorithm for worst fit. Show how worst fit would have handled the two unsorted examples in the text.3. Do Exercise 4 on p. 365 of your text. For the examples, show the bin contents afterthe algorithm terminates. The following is a first-fit algorithm which you may find useful as a starting point.bin Pac1st(size, n)for(i=1; in; i++)used[i] = 0item+ for(item = 1; item n; item++)loc= 1while(used[loc] + size[item] > 1)loc= loc + 1used[loc]= used[loc] + size[item]bin[item] = locreturn(bin) 2. A star has an apparent magnitude ofV=15and an absolute magnitude ofMV=4.2. (a) What would the parallax angle for this star be, in arcseconds? (b) What is the largest angle with respect to the background stars that the star would move if studied over the course of a year? Quesiton 8. Please help with Assembly Lang. tksa) Please convert 0xC23D0000 to Binaryb) if 0xC23d0000 is an IEEE 754 single precision expression. What is mantissa, biased exponent in Decimal, and real exponent in Decimal?c) Please convert IEEE 754 single precision bit pattern 0xC23D0000 to a Decimal Expression? show full details Consider a causal LTI system described by the following linear constant coefficient difference equation (LCCDE), 1 y(n) = 3Ry(n 1) - 2 y(n 2) + x(n) 2R Compute the followings: i. Impulse response of the system, h(n) ii. Step response of the system, s(n) iii. Sketch the pole-zero plot of the system and discuss the stability of the system. Use R=140.Digital signals processing question.kindly give detailed and accurate solution. Thank you! Pick one situation that has not already been posted and describe one defense you could use if you were the person involved. It is "first come, first serve" in selecting scenarios. If all the situations have been discussed, choose one already posted and offer a different possible defense. Include an explanation of why this defense makes sense to you; you may also include references (e.g., text page, web site, etc.). Note: Many of the possible defenses apply to numerous situations so the defenses themselves will be repeated several times with different explanations of why they apply.If someone alleges that your negligence caused them injury, what is one possible defense (legally justified excuse) or way to reduce your liability that you may be able to assert?(h) You are celebrating and have way too much to drink at a local bar. While driving home, you injure someone or damage their property.OR(a) You own a skateboard park and the plaintiff is injured doing jumping tricks. Explain how the following factors influence the recycling atsource:Rural and urban communitiesDeveloped and developing countriesFrequency of collectionMulti-dwelling and single dwelling housesC The flue gas with a flowrate of 10,000 m/h contains 600 ppm of NO and 400 ppm of NO2, respectively. Calculate total daily NH3 dosage (in m/d and kg/d) for a selective catalytic reduction (SCR) treatment system if the regulatory limit values of NO and NO2 are 60 ppm and 40 ppm, respectively (NH3 density = 0.73 kg/mp). x(t)={ 2t,0,for t2otherwise a) Draw x(t) as a function of t, making sure to indicate all relevant values on both axes. b) Define the signal y=xxx. Let t 0be the smallest positive value such that y(t 0)=0. Determine t 0, explaining your answer. c) The Fourier Transform Y() of the signal y(t) of part b) has the form Y()=a(sinc(b)) c, where a and b are real numbers and c is a positive integer. Determine a,b and c, showing all steps of your working. d) Let T be a real positive number. Consider the continuous-time signal w given by w(t) defined for all tR as w(t)={ 1+cos( 2Tt),0,for t2Totherwise Draw w(t) as a function of t, making sure to indicate all relevant values on both axes. e) Determine the Fourier Transform W() of the signal w(t) defined in part d), showing all steps.