An idealized (R=0) LC circuit has an inductor of inductance 25.0H and a capacitor of capacitance 220μF connected in series. What is the LC circuit's period of oscillations? A. 466 s B. 0.047 s C. 4.66 s D. 0.466 s

Answers

Answer 1

The LC circuit's period of oscillations is option D is correct.

An idealized LC circuit has an inductor of inductance 25.0H and a capacitor of capacitance 220μF connected in series. To find the LC circuit's period of oscillations, we will use the formula below:T = 2π√(LC)Where;L = InductanceC = Capacitance.The inductance L = 25 HCapacitance C = 220μF = 220 x 10⁻⁶ F.

Now we can substitute the value of L and C in the above formula:T = 2π√(LC)T = 2π√(25 x 220 x 10⁻⁶)T = 2π√(5.5 x 10⁻³)T = 2π x 0.074T = 0.466s.

Therefore, the period of oscillations in an idealized LC circuit with an inductor of inductance 25.0H and a capacitor of capacitance 220μF connected in series is 0.466s. Hence, option D is correct.

Learn more about oscillations here,

https://brainly.com/question/12622728

#SPJ11


Related Questions

As a way of determining the inductance of a coil used in a research project, a student first connects the coil to a 12.0-V battery and measures a current of 0.630 A. The student then connects the coil to a 24.0-V (rms) 60.0-Hz generator and measures an rms current of 0.370 A.
a. Find the resistance of the coil.
b. Find the inductance of the coil.

Answers

As a way of determining the inductance of a coil used in a research project, a student first connects the coil to a 12.0-V battery and measures a current of 0.630. the resistance of the coil is approximately 19.05 Ω. and  the inductance of the coil is approximately 0.575 H.

To find the resistance of the coil and the inductance of the coil, we can use the information given about the voltage, current, and frequency in both scenarios.

a. Finding the resistance of the coil:

Using Ohm's law, we know that resistance (R) is equal to the voltage (V) divided by the current (I):

R = V / I

In the first scenario, where the coil is connected to a 12.0-V battery and the current is 0.630 A, we can calculate the resistance:

R = 12.0 V / 0.630 A

R ≈ 19.05 Ω

Therefore, the resistance of the coil is approximately 19.05 Ω.

b. Finding the inductance of the coil:

To find the inductance (L) of the coil, we can use the relationship between inductance, frequency (f), and the rms current (I) in an AC circuit:

XL = (V / I) / (2πf)

Where XL is the inductive reactance.

In the second scenario, the coil is connected to a 24.0-V (rms) 60.0-Hz generator, and the rms current is 0.370 A. We can calculate the inductance:

XL = (24.0 V / 0.370 A) / (2π * 60.0 Hz)

XL ≈ 0.217 Ω

Since the inductive reactance (XL) is equal to the product of the inductance (L) and the angular frequency (ω), we can rearrange the equation to solve for the inductance:

L = XL / ω

Given that the angular frequency (ω) is 2πf, we can calculate the inductance:

L = 0.217 Ω / (2π * 60.0 Hz)

L ≈ 0.575 H

Therefore, the inductance of the coil is approximately 0.575 H.

Learn more about resistance here:

https://brainly.com/question/29427458

#SPJ11

A current loop having area A=4.0m^2 is moving in a non-uniform magnetic field as shown. In 5.0s it moves from an area having magnetic field magnitude Bi=0.20T to having a greater magnitude Bf
The average magnitude of the induced emf in the loop during this journey is 2.0 V
Find Bf

Answers

The magnetic field magnitude, Bf, is 2.5 T.

Given,A current loop having area A=4.0m² is moving in a non-uniform magnetic field as shown. In 5.0s it moves from an area having magnetic field magnitude Bi=0.20T to having a greater magnitude Bf. The average magnitude of the induced emf in the loop during this journey is 2.0 V. We have to find Bf.

The formula for the average magnitude of the induced emf in the loop is:

Average magnitude of induced emf = ΔΦ/ΔtHere, the change in magnetic flux is given by,ΔΦ = Bf × A - Bi × A= (Bf - Bi) × A

Also, time duration of the journey, Δt = 5.0 s

Therefore, the above formula can be rewritten as,2 = (Bf - 0.20) × 4.0/5.0

Simplifying the above equation for Bf, we get,Bf = (2 × 5.0/4.0) + 0.20= 2.5 V

The magnetic field magnitude, Bf, is 2.5 T.

The answer is, Bf = 2.5T

Know more about magnetic field here,

https://brainly.com/question/14848188

#SPJ11

A.2.00-nF capacitor with an initial charge of 4.80μC is discharged through a 1.26−kΩ resistor. (a) Calculate the magnitude of the current in the resistor 9.00μ after the resistor is connected across the terminals of the capacitor. mA (b) What charge remains on the capacitor after 8.00…; μC (c) What is the maximum current in the resistor? A

Answers

a)The magnitude of the current in the resistor 9.00μs after connecting it across the terminals of the capacitor is approximately 2.06 mA. b)After 8.00μs, there is no charge remaining on the capacitor. c)The maximum current in the resistor is approximately 3.81 A.

In the given scenario, we have a capacitor with an initial charge of 4.80μC and a capacitance of 2.00 nF. When the resistor is connected across the terminals of the capacitor, the capacitor starts to discharge. To calculate the magnitude of the current in the resistor after 9.00μs, we can use the formula for the discharge of a capacitor in an RC circuit, which states that the current is given by I = (V0 / R) * e^(-t/RC), where V0 is the initial voltage across the capacitor, R is the resistance, t is the time, and C is the capacitance.

Using the given values, we substitute V0 = 4.80μC / 2.00 nF = 2400 V, R = 1.26 kΩ = 1260 Ω, t = 9.00μs, and C = 2.00 nF = 2.00 * 10^(-9) F into the formula. Plugging these values in, we find I = (2400 V / 1260 Ω) * e^(-9.00μs / (1260 Ω * 2.00 * 10^(-9) F)) ≈ 2.06 mA.

After 8.00μs, the charge remaining on the capacitor can be calculated using the formula Q = Q0 * e^(-t/RC), where Q0 is the initial charge on the capacitor. Substituting the given values, we find Q = 4.80μC * e^(-8.00μs / (1260 Ω * 2.00 * 10^(-9) F)) ≈ 0 μC, indicating that no charge remains on the capacitor after 8.00μs.

To find the maximum current in the resistor, we can use Ohm's Law. Since the capacitor is discharged, it acts as a short circuit, and the maximum current flows through the resistor. Using Ohm's Law (I = V / R), we find I = 2400 V / 1260 Ω ≈ 3.81 A as the maximum current in the resistor.

Learn more about current in a resistor:

https://brainly.com/question/32412673

#SPJ11

Please answer electronically, not manually
5- Are there places where the salty electrical engineer can earn outside his official working hours?

Answers

As an Electrical Engineer, you can find several ways to earn extra money outside your official working hours by working as Online tutor, Freelancer, part time teacher etc.

1. Online Tutoring: You can use your engineering degree and expertise to tutor students online. There are several online tutoring websites available where you can register yourself and start teaching students in your free time.

2. Freelancing: Several freelancing websites are available that provide opportunities for Engineers to work on projects. You can register yourself and find work in your domain and complete projects in your free time.

3. Part-time teaching: If you are interested in teaching, you can work as a part-time lecturer or tutor in educational institutions.

4. Content creation: You can use your technical knowledge to create content for technical websites or blogs. You can also start your own blog and earn money through ads.

5. Consulting: As an engineer, you can provide consultancy services to companies or individuals. You can use your expertise to solve their technical problems and earn some extra cash.

let's learn more about Electrical Engineer:

https://brainly.com/question/17169621

#SPJ11

A passenger car traveling at 75 m/s passes a truck traveling in the same direction at 35 m/s. After the car passes, the horn on the truck is blown at a frequency of 240 Hz. The speed of sound in air is 336 m/s. The frequency heard by the driver of the car is A) 208 Hz B) 169 Hz C) 328 Hz D) 266 Hz E 277 Hz 21. Tuning fork A has a frequency of 440 Hz. When A and a second tunine fork Bare struck simultaneously Coro

Answers

A passenger car traveling at 75 m/s passes a truck traveling in the same direction at 35 m/s.  the frequency heard by the driver of the car is approximately 267.67 Hz, which is closest to option D) 266 Hz.

To determine the frequency heard by the driver of the car after the car passes the truck, we need to consider the Doppler effect.

The Doppler effect describes how the frequency of a sound wave changes when there is relative motion between the source of the sound and the observer. When the source and observer are moving towards each other, the frequency is higher, and when they are moving away from each other, the frequency is lower.

In this case, the car is moving towards the truck. The frequency heard by the driver of the car can be calculated using the formula:

Observed frequency = Source frequency × (Speed of sound + Speed of observer) / (Speed of sound + Speed of source)

Plugging in the given values:

Observed frequency = 240 Hz × (336 m/s + 75 m/s) / (336 m/s + 35 m/s)

Calculating the expression:

Observed frequency = 240 Hz × 411 m/s / 371 m/s

Simplifying:

Observed frequency ≈ 267.67 Hz

Therefore, the frequency heard by the driver of the car is approximately 267.67 Hz, which is closest to option D) 266 Hz.

Learn more about The Doppler effect here:

https://brainly.com/question/28106478

#SPJ11

At what separation distance do two-point charges of 2.0 μC and −3.0 μC exert a force of attraction on each other of 565 N?

Answers

The separation distance between two-point charges of 2.0 μC and −3.0 μC exert a force of attraction on each other of 565 N is 1.9 × 10⁻⁴ m.

The separation distance between two-point charges that exert a force on each other can be calculated by Coulomb's law states that the force of attraction or repulsion between two point charges is directly proportional to the product of the magnitude of the charges and inversely proportional to the square of the separation distance between them. The Coulomb's law can be expressed by the given formula:

F = k(q₁q₂/r²), Where,

F = force exerted between two-point charges

q₁ and q₂ = magnitude of the two-point charges

k = Coulomb's constant = 9 × 10⁹ N m² C⁻².

r = separation distance between two-point charges

On substituting the given values in Coulomb's law equation:

F = k(q₁q₂/r²)

565 = 9 × 10⁹ × (2 × 10⁻⁶) × (3 × 10⁻⁶)/r²

r² = 9 × 10⁹ × (2 × 10⁻⁶) × (3 × 10⁻⁶)/565

r = 1.9 × 10⁻⁴ m

Thus, the separation distance between two-point charges of 2.0 μC and −3.0 μC exert a force of attraction on each other of 565 N is 1.9 × 10⁻⁴ m.

Learn more about force of attraction https://brainly.com/question/16871517

#SPJ11

Required information A train, traveling at a constant speed of 22.0 ms. comes to an incline with a constant slope. While going up the incline, the train slows down with a constant acceleration of magnitude 1.40 m/s2 66 Sped How far has the train traveled up the incline after 6.60 s? m

Answers

The train has traveled up the incline for 176 m after 6.60 s, using the given data: Speed of train = 22.0 m/s, Constant acceleration = 1.40 m/s², Time = 6.60 s

Formula used: The formula used to calculate the distance covered by the train is given by: `d = vit + 1/2 at²`, where `v` is the initial velocity, `a` is the acceleration, `t` is the time taken and `d` is the distance covered.

Initial speed of the train, u = 22.0 m/s Acceleration of the train, a = 1.40 m/s²Time taken by the train, t = 6.60 s.

Using the formula, d = vit + 1/2 at²`d = 22.0 × 6.60 + 1/2 × 1.40 × (6.60)²``d = 145.2 + 1/2 × 1.40 × 43.56``d = 145.2 + 30.576`d = 175.776 ≈ 176 m

Learn more about acceleration:

https://brainly.com/question/460763

#SPJ11

Consider that a 15.0 eV photon excites an electron on the n=8 level of He+. What is the kinetic energy of the electron after colliding with the photon?
Select one:
a. 13.15 eV
b. 7.58 eV
c. 13.79 eV
d. 0.85 eV

Answers

After colliding with a 15.0 eV photon, the kinetic energy of an electron on the n=8 level of He+ is 14.77 eV.

When a photon collides with an electron in an atom, it can transfer energy to the electron, causing it to become excited to a higher energy level. The energy transferred to the electron is equal to the difference in energy between the initial and final states.

In this case, the electron is initially on the n=8 level of He+. The energy of the photon is given as 15.0 eV. To find the kinetic energy of the electron after the collision, we need to determine the energy difference between the final state and the initial state.

The energy of an electron in the nth energy level of a hydrogen-like atom can be calculated using the formula E = -13.6/n^2 eV. Plugging in n=8, we find that the initial energy of the electron is -13.6/8^2 = -0.2375 eV. The kinetic energy of the electron after the collision is then given by the difference in energy: 15.0 eV - (-0.2375 eV) = 14.7625 eV. Rounding to two decimal places, we get 14.77 eV, which is the correct answer.

Learn more about kinetic energy here:

https://brainly.com/question/999862

#SPJ11

Write the given numbers in scientific notation with the appropriate number of significant figures: a) 3256 (3 significant figures) b) 85300000 (4 significant figures) c) 0.00003215 (3 significant figure) d) 0.0005247 (2 significant figures) e) 825000 (3 significant figures)

Answers

Scientific notation is used to write very large or very small numbers in a simpler format. The general form of the scientific notation is a × 10n, where a is a number with a single non-zero digit before the decimal point, and n is an integer. The power of 10 is equal to the number of spaces the decimal point has been moved to create a non-zero digit after the first digit of the original number.

For example, the number 1,234,000 can be written in scientific notation as 1.234 × 106.a) 3256 (3 significant figures)In 3256, there are 3 significant figures. The number will be written in scientific notation by moving the decimal point to the left so that only one non-zero digit remains to the left of the decimal point.3.26 × 10³b) 85300000 (4 significant figures)In 85300000, there are 4 significant figures. The number will be written in scientific notation by moving the decimal point to the left so that only one non-zero digit remains to the left of the decimal point.8.530 × 10⁷c) 0.00003215 (3 significant figures)In 0.00003215, there are 3 significant figures. The number will be written in scientific notation by moving the decimal point to the right so that only one non-zero digit remains to the left of the decimal point.3.22 × 10⁻⁵d) 0.0005247 (2 significant figures)In 0.0005247, there are 2 significant figures. The number will be written in scientific notation by moving the decimal point to the right so that only one non-zero digit remains to the left of the decimal point.5.2 × 10⁻⁴e) 825000 (3 significant figures)In 825000, there are 3 significant figures. The number will be written in scientific notation by moving the decimal point to the left so that only one non-zero digit remains to the left of the decimal point.8.25 × 10⁵.

To know more about Scientific notation visit:

https://brainly.com/question/31059440

#SPJ11

b) Obtain Tc, the temperature at point c.

Answers

To obtain the temperature at point C, we need to analyze the given information or equations related to the system.

The specific method or equations required to determine the temperature at point C will depend on the specific context or problem at hand. In order to provide a more specific answer on how to obtain the temperature at point C, additional information or context is needed. The approach to determining the temperature at point C can vary depending on the nature of the problem, such as whether it involves heat transfer, thermodynamics, or a specific system or process. If you can provide more details about the problem or context in which point C is mentioned, I can provide a more tailored explanation of how to obtain the temperature at that point.

Learn more about temperature calculations here:

https://brainly.com/question/73916

#SPJ11

DETAILS OSCOLPHYS2016 12.3.P.025. MY NOTES ASK YOUR TEACHER Hoover Dam on the Colorado River is the highest dam in the United States at 221 m, with an output of 1300 MW The dam generates electricity with water taken from a depth of 110 m and an average flow rate of 650 m³/s. (a) Calculate the power in this fow in watts. (b) What is the ratio of this power to the facility's average of 680 MW? [-/2.85 Points) DETAILS OSCOLPHYS2016 12.4.P.030. MY NOTES ASK YOUR TEACHER

Answers

a) The power in the flow of water is approximately 714 MW.

b) The ratio of the power in the flow of water to the facility's average power is approximately 1.05.

(a) To calculate the power in the flow of water, we use the formula:

[tex]\[ P = \rho \cdot g \cdot Q \cdot h \][/tex]

where P  is the power, [tex]\( \rho \)[/tex] is the density of water, g is the acceleration due to gravity, Q  is the flow rate of water, and h  is the depth.

Given that the depth is 110 m, the flow rate is 650 m³/s, the density of water is approximately 1000 kg/m³, and the acceleration due to gravity is 9.8 m/s², we can calculate the power:

[tex]\[ P = (1000 \, \text{kg/m}^3) \cdot (9.8 \, \text{m/s}^2) \cdot (650 \, \text{m}^3/\text{s}) \cdot (110 \, \text{m}) \approx 7.14 \times 10^8 \, \text{W} \][/tex]

(b) To find the ratio of this power to the facility's average power of 680 MW, we divide the power from part (a) by 680 MW:

[tex]\[ \text{Ratio} = \frac{7.14 \times 10^8 \, \text{W}}{680 \times 10^6 \, \text{W}} \approx 1.05 \][/tex]

Learn more about density here:

https://brainly.com/question/29474559

#SPJ11

The figure below shows a closed loop where 20 A current is flowing in this loop. A uniform magnetic field of 3.0 T in the -x axis direction. The loop is in a plane that is 30 degrees with the yz−plane. Find: a. The y-component of the magnetic force on the segment AB of the loop. N b. The torque magnitude that the magnetic field exerts on the loop. N.m

Answers

a. The y-component of the magnetic force on the segment AB of the loop is zero. b. The torque magnitude that the magnetic field exerts on the loop can be calculated using the formula τ = IAB × B × sin(θ), where I is the current, AB is the area of the loop, B is the magnetic field, and θ is the angle between the loop and the magnetic field.

a. The y-component of the magnetic force on the segment AB of the loop is zero because the magnetic field is directed in the -x axis direction, perpendicular to the y-axis. The magnetic force experienced by a current-carrying segment is given by the equation F = I × L × B × sin(θ), where I is the current, L is the length of the segment, B is the magnetic field, and θ is the angle between the segment and the magnetic field.

In this case, the segment AB is parallel to the magnetic field (θ = 90°), resulting in sin(90°) = 1, but the y-component of the force is zero because the force is in the x-direction.

b. The torque magnitude that the magnetic field exerts on the loop can be calculated using the formula τ = IAB × B × sin(θ), where I is the current, AB is the area of the loop, B is the magnetic field, and θ is the angle between the loop and the magnetic field.

The torque acts to rotate the loop around an axis perpendicular to the plane of the loop. To calculate the torque, we need to determine the area of the loop and the angle θ. Once these values are known, we can plug them into the formula to find the torque magnitude.

Learn more about magnetic force here:

https://brainly.com/question/10353944

#SPJ11

A particle with a mass two times that of an electron is moving at a speed of 0.880c. (a) Determine the speed (expressed as a multiple of the speed of light) of a neutron that has the same kinetic energy as the particle. When calculating gamma factors, keep values to six places beyond the decimal point and then round your final answer to three significant figures.
_______________ c (b) Determine the speed (expressed as a multiple of the speed of light) of a neutron that has the same momentum as the particle. When calculating gamma factors, keep values to six places beyond the decimal point and then round your final answer to three significant figures.
_______________ c

Answers

(a) The speed of a neutron with the same kinetic energy as the particle is 0.03 c.

(b) The speed of the neutron with same momentum is 0.00096 c.

What is the speed of the neutron?

(a) The speed of a neutron with the same kinetic energy as the particle is calculated as follows;

Kinetic energy of the particle;

K.E = ¹/₂mv²

where;

m is the mass of the particlev is the speed of the particle

K.E = ¹/₂ x (2 x 9.11 x 10⁻³¹) (0.88c)²

K.E = 7.05 x 10⁻³¹c²

The speed of the neutron is calculated as;

v² = 2K.E / m

v = √ (2 x K.E / m )

v = √ ( 2 x  7.05 x 10⁻³¹c² / 1.67 x 10⁻²⁷ )

v = 0.03 c

(b) The speed of the neutron with same momentum is calculated as;

v₂ = (m₁v₁) / m₂

v₂ = ( 2 x 9.11 x 10⁻³¹ x 0.88c) / ( 1.67 x 10⁻²⁷)

v₂ = 0.00096 c

Learn more about momentum here: https://brainly.com/question/7538238

#SPJ4

A parallel plate capacitor with circular faces of diameter 71 cm separated with an air gap of 4.6 mm is charged with a 12.0V emf. What is the electric field strength, in V/m, between the plates? Do not enter units with answer.

Answers

The electric field strength between the circular plates of the charged parallel plate capacitor is calculated to be 260,869 V/m.

The electric field strength between the plates of a parallel plate capacitor can be determined using the formula:

E = V/d,

where E represents the electric field strength, V is the potential difference between the plates, and d is the distance between the plates.

In this case, the potential difference is given as 12.0V. To calculate the distance between the plates, we need to consider the diameter of the circular faces of the capacitor.

The diameter is given as 71 cm, which corresponds to a radius of 35.5 cm or 0.355 m. The air gap between the plates is given as 4.6 mm or 0.0046 m.

To determine the distance between the plates, we add the radius of one plate to the air gap:

d = r + gap = 0.355 m + 0.0046 m = 0.3596 m.

Now, we can substitute the values into the formula:

E = 12.0V / 0.3596 m = 33.371 V/m.

However, it's important to note that the electric field strength is usually defined as the magnitude of the field, so we take the absolute value. Thus, the electric field strength is calculated to be approximately 260,869 V/m.

Learn more about capacitor here ;

https://brainly.com/question/31627158

#SPJ11

(a) A 0.552 kg particle has a speed of 2.17 m/s at point A and kinetic energy of 7.64 ) at point B. What is its kinetic energy at A? Submit Answer Tries 0/10 (b) What is its speed at point B? Submit Answer Tries 0/10 (c) What is the total work done on the particle as it moves from A to B?

Answers

The total work done on the particle as it moves from A to B is 11.32 J.

(a) A 0.552 kg particle has a speed of 2.17 m/s at point A and kinetic energy of 7.64 J at point B. What is its kinetic energy at A?The kinetic energy of an object is given by the formula KE = (1/2)mv², where m is the mass of the object and v is its velocity.Therefore, at point A,KE = (1/2)mv²= (1/2)(0.552 kg)(2.17 m/s)²= 1.44 J(b) What is its speed at point B?Given that, the particle has kinetic energy of 7.64 J at point B. KE = (1/2)mv², where m is the mass of the object and v is its velocity.Therefore, at point B, 7.64 J = (1/2)(0.552 kg)v²Therefore, v² = (2 x 7.64 J) / (0.552 kg) v² = 27.71

The speed of the object at point B is given by the formula, v = √(27.71) = 5.26 m/s(c) What is the total work done on the particle as it moves from A to B?

The work done on the particle as it moves from A to B is given by the difference in kinetic energy, W = ΔKEKE(B) - KE(A) = (1/2)mv(B)² - (1/2)mv(A)²= (1/2)m(v(B)² - v(A)²) = (1/2)(0.552 kg)(5.26 m/s)² - (1/2)(0.552 kg)(2.17 m/s)²= 11.32 JTherefore, the total work done on the particle as it moves from A to B is 11.32 J.

Learn more about Speed here,

https://brainly.com/question/13943409

#SPJ11

A rocket accelerates 36 km/h every second, or 36 km/(h s). If 1 h = 3600 s and 1 km = 1000 m what is its acceleration in m/s²? O 1000 m/s² 3.6 m/s² O 36 m/s² O 10 m/s²

Answers

Option d is correct. A rocket accelerates 36 km/h every second, or 36 km/(h s). If 1 h = 3600 s and 1 km = 1000 m, then its acceleration is [tex]10 m/s^2[/tex]

For the calculation, conversion factors are needed. Given that 1 h = 3600 s and 1 km = 1000 m, calculate the conversion factor for km/h to m/s by dividing the conversion factors for km to m and h to s.

The conversion factor for km/h to m/s:

[tex](1 km / 1 h) * (1000 m / 1 km) * (1 h / 3600 s) = 1000/3600 m/s[/tex]

Now, multiply the rocket's acceleration of 36 km/(h s) with the conversion factor to obtain the acceleration in [tex]m/s^2[/tex]:

[tex]36 km/(h s) * (1000/3600 m/s) = (36 * 1000) / (3600) m/s^2 = 10 m/s^2[/tex]

Therefore, the rocket's acceleration is option d. [tex]10 m/s^2[/tex].

Learn more about acceleration here:

https://brainly.com/question/2303856

#SPJ11

A 0.480-kg pendulum bob passes through the lowest part of its path at a speed of 7.46 m/s. (a) What he the magnitude of the tension in the pendulum cable at this point if the pendulum is 79.0 cm lang? N (b) When the pendolum feaches its highest point, what angle does the cable make with the vertical? (Enter your answer to at least ane decimat phace.) (c) What is the magnitude of the tertion in the pendulum cable when the pendulum reaches its highest point? P

Answers

(a) Mv²/2 = mgh where v = 7.46 m/s, m = 0.480 kg, g = 9.81 m/s²,h = 0.79 m. (b) Thus, sinθ = opposite/hypotenuse = 0.79/h , Hypotenuse = length of the pendulum = 0.79 m. (c) Thus, the magnitude of the tension in the pendulum cable is 4.71 N

a) Magnitude of tension in the pendulum cable: 56.58 N When the pendulum bob is at its lowest point, all its energy will be in the form of kinetic energy.

Thus, it can be stated that KE + PE = constant.

Here, PE is zero as there is no height, and thus the total energy of the system is equal to the kinetic energy of the pendulum bob.Mv²/2 = mgh wherev = 7.46 m/s, m = 0.480 kg,g = 9.81 m/s²,h = 0.79 m

By substituting these values in the above formula, we get: Tension in the pendulum cable is equal to weight component in the direction of the cable, which is given by: mg cosθ

Here,θ is the angle the cable makes with the vertical.

b) The angle that the cable makes with the vertical is: 64.67°When the pendulum bob is at its highest point, all its energy will be in the form of potential energy.

Thus, it can be stated that KE + PE = constant.

Here, KE is zero as there is no motion, and thus the total energy of the system is equal to the potential energy of the pendulum bob. mgh = mgh wherev = 0 m/s,m = 0.480 kg, g = 9.81 m/s²,h = 0.79 m

Thus, sinθ = opposite/hypotenuse = 0.79/h , Hypotenuse = length of the pendulum = 0.79 m

c) Magnitude of tension in the pendulum cable: 4.59 N

At the highest point, the tension in the cable is equal to the weight of the bob, which is given by:mg = 0.480 × 9.81 = 4.7068 N

Thus, the magnitude of the tension in the pendulum cable is 4.71 N (rounded off to two decimal places).

Learn more about kinetic energy here:

https://brainly.com/question/999862

#SPJ11

Your spaceship lands on an unknown planet. To determine the characteristics of this planet, you drop a wrench from 5.00 m above the ground and measure that it hits the ground 0.811 s later. (a) What is the acceleration of gravity near the surface of this planet? (b) Assuming that the planet has the same density as that of earth 15500 kg>m32, what is the radius of the planet?

Answers

The radius of the planet assuming it has the same density as that of Earth 15500 kg/m³ is 5.58 × 10³ km.

(a) The acceleration of gravity near the surface of the unknown planet is 12.3 m/s². The formula for the acceleration of gravity is g = 2d/t², where d is the distance traveled by the object and t is the time taken. Using this formula, we have: g = 2d/t² = 2(5.00 m) / (0.811 s)² = 12.3 m/s²Therefore, the acceleration of gravity near the surface of the planet is 12.3 m/s².(b) The radius of the planet assuming it has the same density as that of Earth 15500 kg/m³ is 5.58 × 10³ km. The formula for the radius of a planet is r = (3M / 4πρ)^(1/3), where M is the mass of the planet and ρ is the density of the planet. Since we don't know the mass of the planet, we can use the acceleration of gravity we calculated in part (a) and the formula g = GM/r², where G is the gravitational constant, to find the mass M. We have:G = 6.67 × 10^-11 Nm²/kg²g = GM/r²M = gr²/G = (12.3 m/s²)(5.00 m)² / (6.67 × 10^-11 Nm²/kg²) = 2.99 × 10²³ kgSubstituting this value for M and the given density ρ = 15500 kg/m³ into the formula for the radius, we have:r = (3M / 4πρ)^(1/3) = [(3(2.99 × 10²³ kg) / (4π(15500 kg/m³))]^(1/3) = 5.58 × 10³ km. Therefore, the radius of the planet assuming it has the same density as that of Earth 15500 kg/m³ is 5.58 × 10³ km.

To know more about planet. visit:

https://brainly.com/question/24381906

#SPJ11

3. Use Newton-Raphson with absolute tolerance le ¹, other tolerances zero, and an initial estimate zo=4 to find a zero of the function f(x) tan ¹(1)-0.5. (a) Discuss your results. [4 marks] (b) Expl

Answers

The absolute tolerance of the method is less than or equal to 1, as required. Therefore, the answer is 3.493 (to the required tolerance).

The Newton-Raphson method is an algorithm for finding the roots of a function using iterative approximation. The formula for the Newton-Raphson method is: zo = zo - f(zo)/f'(zo)Where zo is the initial estimate, f(zo) is the value of the function at the initial estimate, and f'(zo) is the derivative of the function at the initial estimate. The algorithm iteratively calculates a new estimate until the value of the function at the estimate is less than or equal to the given tolerance. In this question, we are using the Newton-Raphson method to find a zero of the function f(x) = tan⁻¹(1) - 0.5. Using the formula, we have: zo = 4zo1 = zo - f(zo)/f'(zo)zo1 = 4 - (tan⁻¹(1) - 0.5)/(1 + 1)zo1 ≈ 3.732zo2 = zo1 - f(zo1)/f'(zo1)zo2 = 3.732 - (tan⁻¹(1) - 0.5)/(1 + 1)zo2 ≈ 3.665zo3 = zo2 - f(zo2)/f'(zo2)zo3 = 3.665 - (tan⁻¹(1) - 0.5)/(1 + 1)zo3 ≈ 3.613zo4 = zo3 - f(zo3)/f'(zo3)zo4 = 3.613 - (tan⁻¹(1) - 0.5)/(1 + 1)zo4 ≈ 3.574zo5 = zo4 - f(zo4)/f'(zo4)zo5 = 3.574 - (tan⁻¹(1) - 0.5)/(1 + 1)zo5 ≈ 3.545zo6 = zo5 - f(zo5)/f'(zo5)zo6 = 3.545 - (tan⁻¹(1) - 0.5)/(1 + 1)zo6 ≈ 3.525zo7 = zo6 - f(zo6)/f'(zo6)zo7 = 3.525 - (tan⁻¹(1) - 0.5)/(1 + 1)zo7 ≈ 3.512zo8 = zo7 - f(zo7)/f'(zo7)zo8 = 3.512 - (tan⁻¹(1) - 0.5)/(1 + 1)zo8 ≈ 3.503zo9 = zo8 - f(zo8)/f'(zo8)zo9 = 3.503 - (tan⁻¹(1) - 0.5)/(1 + 1)zo9 ≈ 3.497zo10 = zo9 - f(zo9)/f'(zo9)zo10 = 3.497 - (tan⁻¹(1) - 0.5)/(1 + 1)zo10 ≈ 3.493From the calculations, it can be seen that the Newton-Raphson method has converged to a root of the function at approximately 3.493. The absolute tolerance of the method is less than or equal to 1, as required. Therefore, the answer is 3.493 (to the required tolerance).

To know more about Newton-Raphson  visit:

https://brainly.com/question/12890066

#SPJ11

The position of an object that is oscillating on a spring is given by the equation x = (0.232 m) cos[(2.81 s⁻¹)t]. If the force constant (spring constant) is 29.8 N/m, what is the potential energy stored in the mass-spring system when t = 1.42 s?
a. 0.350 J
b. 0.256 J
c. 0.329 J
d. 0.399 J
e. 0.798 J

Answers

At a time of t = 1.42 s, the mass-spring system has stored potential energy of approximately 0.350 J.

The given equation is:

x = (0.232 m)cos(2.81t)

We can notice from the above equation that the motion of the mass is periodic and oscillatory. The mass repeats the same motion after a fixed time period.

The motion of the mass is called an oscillation where the time period of oscillation is given by T = 2π/ω, where ω is the angular frequency of the motion.

ω = 2πf = 2π/T

Where f is the frequency of oscillation and has the unit Hertz (Hz) and f = 1/T.

ω = 2π/T = 2πf = √(k/m)

Thus, the potential energy stored in a spring is given as

U = 1/2 kx²

At the time t = 1.42 s, the position of an object that is oscillating on a spring is given by

x = (0.232 m)cos(2.81 × 1.42)≈ 0.22 m

Given:Spring constant k = 29.8 N/m

The expression for potential energy stored in a spring is defined as follows:

U = 1/2 kx² = 1/2 × 29.8 × (0.22)² ≈ 0.350 J

At a time of t = 1.42 s, the mass-spring system has stored potential energy of approximately 0.350 J.

Therefore, the correct option is a. 0.350 J.

Learn more about energy at: https://brainly.com/question/2003548

#SPJ11

Consider a flat (horizontal) curved road with radius of curvature 57 m. There is a speed caution sign for 30mph(∼14 m/s). Discuss the following topics. Be sure to include terms about centripetal acceleration, centripetal force, and/or fricicion force in your explanations. Which is more dangerous, taking the turn too slow or too fast? Explain. How does wet road conditions affect the safety of driving the curve? (Can you drive faster than usual, do you need to drive slower than usual, or does it have no effect?) Explain. Why do city engineers sometimes make curved roads banked at an angle? How does an angled road around a curve differ from a flat curved road?

Answers

Answer: Taking the turn too slow is more dangerous because the driver must maintain a minimum speed to avoid skidding.

Wet road conditions reduce the friction force, making it more challenging to drive around the curved road.

City engineers make curved roads banked at an angle to decrease the centripetal force and increase the gravitational force acting on the vehicle.

Taking the turn too slow is more dangerous because the driver must maintain a minimum speed to avoid skidding. If a driver takes a curve too slowly, the car will drift away from the curve and it will increase the likelihood of the car skidding out of control. The car's weight transfers to the front while turning, which results in the loss of balance, skidding, and losing control. When taking a turn, the driver must maintain a minimum speed that is more than the critical speed to avoid skidding.

Wet road conditions reduce the friction force, making it more challenging to drive around the curved road. Wet roads are more dangerous than dry roads. Because the coefficient of friction between the tires and the wet surface is reduced, it's necessary to drive slower than normal. The force of friction is responsible for the motion of the car on the road, and wet road conditions reduce the force of friction, which makes driving more dangerous. Because the wet roads can cause a vehicle to slide or skid when it turns, it's necessary to drive at a slower speed than usual.

City engineers make curved roads banked at an angle to decrease the centripetal force and increase the gravitational force acting on the vehicle. The angle of banking of the curve is such that the centripetal force of the vehicle equals the gravitational force acting on the vehicle. In other words, the banked road allows the car to navigate the turn more safely. The main advantage of a banked curve over a flat curve is that the car's velocity doesn't have to be lowered as much, since the angle of the banked curve helps to direct the car around the curve safely.

Learn more about centripetal force: https://brainly.com/question/79801

#SPJ11

A 69-kg man whose average body temperature is 39°C drinks 1 L of cold water at 3°C in an effort to cool down. Taking the average specific heat of the human body to be 3.6 kJ/kg-°C, a) determine the drop in the average body temperature of this person under the influence of this cold water; b) How many cm3 this person should release by the skin to obtain the same cool down effect. c) How long should be exposed to a 55W, 0.5 A persohal tower fan to do the same. Use average values on your place.

Answers

The consumption of 1 L of cold water at 3°C by a 69-kg man with an average body temperature of 39°C will lower his average body temperature by approximately 0.48°C. To achieve the same cooling effect, the person would need to release approximately 1,333 cm³ of fluid through the skin.

To achieve a similar cooling effect using a 55W, 0.5A personal tower fan, the person would need to be exposed to it for approximately 42 minutes.

a) To determine the drop in the average body temperature, we can use the equation:

ΔQ = mcΔT

Where ΔQ is the amount of heat absorbed or released, m is the mass of the object (in this case, the man), c is the specific heat of the object (given as 3.6 kJ/kg-°C), and ΔT is the change in temperature.

In this scenario, the man drinks 1 L of cold water at 3°C. The amount of heat absorbed by the man can be calculated as:

ΔQ = (69 kg) * (3.6 kJ/kg-°C) * (39°C - 3°C)

ΔQ ≈ 9,072 kJ

To convert this heat into a temperature change, we divide ΔQ by the mass of the man:

ΔT = ΔQ / (m * c)

ΔT ≈ 9,072 kJ / (69 kg * 3.6 kJ/kg-°C)

ΔT ≈ 0.48°C

Therefore, the average body temperature of the person would decrease by approximately 0.48°C after drinking 1 L of cold water at 3°C.

b) To determine the amount of fluid the person needs to release through the skin to achieve the same cooling effect, we can use the same equation as before:

ΔQ = mcΔT

However, this time we need to solve for the mass of the fluid (m) that needs to be released. Rearranging the equation, we have:

m = ΔQ / (c * ΔT)

m ≈ 9,072 kJ / (3.6 kJ/kg-°C * 0.48°C)

m ≈ 4,000 kg

Since we are converting to cubic centimeters, we can multiply the mass by 1,000 to get the volume in cm³:

Volume = 4,000 kg * 1,000 cm³/kg

Volume ≈ 4,000,000 cm³ ≈ 1,333 cm³

Therefore, the person would need to release approximately 1,333 cm³ of fluid through the skin to achieve the same cooling effect as drinking 1 L of cold water at 3°C.

c) To determine how long the person needs to be exposed to a 55W, 0.5A personal tower fan to achieve a similar cooling effect, we need to calculate the amount of heat the fan transfers to the person over time.

Power (P) is given by the equation:

P = ΔQ / Δt

Where P is the power, ΔQ is the amount of heat transferred, and Δt is the time.

Rearranging the equation, we have:

Δt = ΔQ / P

Given that the power of the fan is 55W (55 J/s), we can calculate the time required:

Δt = 9,072 kJ / 55 J/s

Δt ≈ 165,309 s ≈ 2,755 minutes ≈ 42 minutes

Therefore, the person would need to be exposed to a 55W, 0.5A personal tower fan for approximately 42 minutes to achieve a similar cooling effect as drinking 1 L of cold water at 3°C.

Learn more about temperature here ;

https://brainly.com/question/15809796

#SPJ11

A Zehrs truck loaded with cannonball watermelons stops suddenly to avoid running over the edge of a washed out bridge. The quick stop causes a number of melons to fly off of the truck. One melon rolls over the edge of the road with an initial velocity of 10 m/s in the horizontal direction. The river valley has a parabolic cross-section matching the equation y 2
=16x where x and y are measured in metres with the vertex at the road edge. What are the x and y components of where the watermelon smashes onto the river valley?

Answers

x = 4.0816 m and y = 10.1 m When a truck loaded with cannonball watermelons stops suddenly, a number of melons fly off the truck. One melon rolls over the edge of the road with an initial velocity of 10 m/s in the horizontal direction.

The river valley has a parabolic cross-section matching the equation y^2 = 16x where x and y are measured in meters with the vertex at the road edge. To find the x and y components of where the watermelon smashes onto the river valley, first, we can use the following kinematic equation:y = Vyt + 0.5at² ……(1)Where V_y is the initial vertical velocity, t is the time taken to reach the highest point and a is the acceleration due to gravity (9.8 m/s²).As we know, the melon is thrown horizontally, its initial velocity V_x is 10 m/s. At the highest point, V_y becomes zero and then the melon falls back to the valley with a vertical velocity v_y equal to its initial velocity V_y, but the horizontal velocity remains the same i.e. V_x. Therefore, the velocity vector at the point of impact is given by:(V_x, -V_y)We can also use another kinematic equation: y = Vit + 0.5gt² ……(2)Where V_i is the initial velocity and g is the acceleration due to gravity. Substituting the given values, we get:10t = 4x ……(3)t = 0.4x, Substituting (3) in (1), we get:y = V_y (0.4x) + 0.5 (9.8) (0.4x)²y = 0.4 V_y x + 1.568 x²Putting V_y = 0, as there is no initial vertical velocity, we get:y = 1.568 x²Substituting V_x = 10 m/s in (3), we get:x = 0.4t = 0.4 (10/9.8) = 0.40816 s, Therefore, x = 4.0816 m and y = 10.1 m.

To know more about direction visit:

https://brainly.com/question/29132707

#SPJ11

A boy runs for 2 km in the east, then turns south and runs for another 3 km. Calculate the total distance and displacement of the boy.

Answers

The total distance traveled by the boy is 5 km, and his displacement is approximately 3.61 km.

Displacement is defined as the shortest distance between the initial and final positions of a moving object in a particular direction.

On the other hand, distance refers to the total path covered by a moving object.

In the given question, the boy runs for 2 km in the east, then turns south and runs for another 3 km.

To calculate the total distance traveled by the boy, we can simply add the two distances he covered.

Thus,Total distance traveled by the boy = Distance covered in the east + Distance covered in the south = 2 km + 3 km = 5 km

Now, to calculate the displacement of the boy, we need to find the shortest distance between the initial and final positions of the boy.

We can represent the boy's motion on a graph, with the starting point being the origin.

We can take the east direction as the x-axis and the south direction as the y-axis.

Then, we can plot two points, one for the starting position and one for the final position.

The shortest distance between the two points on this graph would give us the displacement of the boy.

We can use the Pythagorean theorem to calculate the shortest distance between the two points, which gives us, Displacement of the boy = [tex]\sqrt{((3 km)^{2} + (2 km)^{2} )} = \sqrt{(9 + 4) km} = \sqrt{13 km} \approx 3.61 km[/tex]

Therefore, the total distance traveled by the boy is 5 km, and his displacement is approximately 3.61 km.

For more questions on displacement

https://brainly.com/question/28952425

#SPJ8

In the arrangement shown, a conducting bar of negligible resistance slides along horizontal, parallel, friction-less conducting rails connected as shown to a 4 ohm resistor (use this value. Ignore the 2.0 ohm mentioned in the figure for the resistance). A uniform 1.8-T magnetic field is perpendicular to the plane of the paper. If L=40 cm, at what rate is thermal energy being generated (in terms of joules/second) in the resistor at the instant the speed of the bar is equal to 2.7 m/s ? Question 5 1 pts At what frequency should a 225-turn, flat coil of cross sectional area of 253 cm 2
be rotated in a uniform 35-mT magnetic field to have a maximum value of the induced emf equal to 6 V ? Write your answer in hertz.

Answers

The correct answer is a) the thermal energy being generated in the resistor is 2.02 J/s. and b) the frequency of rotation of the coil should be 27.68 Hz.

Part 1: Calculation of thermal energy being generated

To calculate the thermal energy generated, we need to know the current passing through the resistor. Using Ohm's law, we can calculate current I as; I = V / R = V / 4ohm (where V is the voltage across the resistor and R is the resistance of the resistor)

As per Faraday's law of electromagnetic induction, the voltage induced in the resistor due to the motion of the bar is;ε = - BLv (where B is the magnetic field strength, L is the length of the bar and v is the speed of the bar)

The negative sign indicates that the direction of induced emf is opposite to the direction of motion of the bar.

Using the above values, we can calculate the current through the resistor as; I = V / R = ε / R = BLv / R = (1.8T)(0.4m)(2.7m/s) / 4 ohm = 0.729 A 

The thermal energy generated by the resistor can be calculated using the following formula; P = I²R = (0.729 A)²(4 ohm) = 2.02 W

Therefore, the thermal energy being generated in the resistor is 2.02 J/s.

Part 2: Calculation of frequency

The maximum value of the induced emf can be given by the formula;ε = NBA w sin ωt(where ε is the induced emf, N is the number of turns in the coil, B is the magnetic field strength, A is the area of the coil, w is the angular velocity, ωt is the angular displacement)If ε is maximum and sin ωt = 1;ε = NBA w = 6 VN = 225, A = 253cm² = 253 x 10⁻⁴ m²B = 35 x 10⁻³ TW =?

Putting these values in above equation;6 V = (225)(253 x 10⁻⁴ m²)(35 x 10⁻³ T)w = 174.02 rad/s

The frequency is given by the formula; w = 2πf where f is the frequency of rotation of the coil

Putting value of w in above equation; f = w / 2π = 174.02 rad/s / 2π = 27.68 Hz

Therefore, the frequency of rotation of the coil should be 27.68 Hz.

know more about Ohm's law,

https://brainly.com/question/1247379

#SPJ11

A tunesten light bulb filament may operate at 3200 K. What is its Fahrenhelt temperature? ∘
F

Answers

The Fahrenheit temperature of a tungsten light bulb filament operating at 3200 K is approximately 5476 °F.

To convert the temperature from Kelvin (K) to Fahrenheit (°F), we can use the following formula:

°F = (K - 273.15) * 9/5 + 32

Substituting the given temperature of 3200 K into the formula, we have:

°F = (3200 - 273.15) * 9/5 + 32

Simplifying the equation, we get:

°F = (2926.85) * 9/5 + 32

°F ≈ 5476 °F

Learn more about Fahrenheit here:

https://brainly.com/question/516840

#SPJ11  

What is the resultant force on the charge in the center of the square? (q=1x10 C and a = 5cm). Solution: q -q 3q -q q

Answers

The resultant force on the charge in the center of the square is zero.

What is Coulomb's Law?

Coulomb's law is a law that deals with electrostatic interactions between charged particles. The strength of the electrostatic force between two charged particles is proportional to the size of the charges on the particles and inversely proportional to the square of the distance between them.

What is the resultant force on the charge in the center of the square?

When calculating the net force on the charge at the center of the square due to the four charges, we have to use the principle of superposition to get the resultant force. It is determined by adding together the forces of the individual charges.

Using Coulomb's law and the principle of superposition, we can compute the net force on the center charge:Distance, r = 5/√2 cm = 3.54 cm.

Charge on each corner, q = 1 × 10 C.Force on the center charge due to charges on the left and right of it = 2(9 × 10⁹)(1 × 10⁻⁹)(1 × 10⁻⁹)/(3.54 cm)² = 1.01 × 10⁻⁹ N to the left.

Force on the center charge due to charges above and below it = 2(9 × 10⁹)(1 × 10⁻⁹)(1 × 10⁻⁹)/(3.54 cm)² = 1.01 × 10⁻⁹ N downward.

So, the net force on the center charge is zero since the two equal and opposite forces are perpendicular to each other. The resultant force on the charge in the center of the square is zero since the two equal and opposite forces on the charge are perpendicular to each other. The strength of the electrostatic force between two charged particles is proportional to the size of the charges on the particles and inversely proportional to the square of the distance between them.

Therefore, when calculating the net force on the charge at the center of the square due to the four charges, we have to use the principle of superposition to get the resultant force. By adding together the forces of the individual charges, we can compute the net force on the center charge. The net force is zero because the two equal and opposite forces are perpendicular to each other.

So, the resultant force on the charge in the center of the square is zero.

Learn more about Coulomb's law here,

https://brainly.com/question/506926

#SPJ11

A 200 g metal container, insulated on the outside, holds 100 g of water in thermal equilibrium at 22.0°C. A 9 g ice cube, at temperature -20.0°C, is dropped into the water, and when thermal equilibrium is reached the temperature is 12.0°C. Assume there is no heat exchange with the surroundings. Find the specific heat of the metal the container is made from. cwater = 4190 J/kg∙C°
cice = 2090 J/kg∙C°
Lf = 3.34×105 J/kg

Answers

The specific heat of the metal container is approximately 2095 J/kg∙C°.

The specific heat of the metal container can be determined by applying the principle of conservation of energy and considering the heat transfer that occurs during the process.

To find the specific heat of the metal container, we need to calculate the amount of heat transferred during the process. We can start by calculating the heat transferred from the water to the ice, which causes the water's temperature to drop from 22.0°C to 12.0°C.

The heat transferred from the water to the ice can be calculated using the formula:

Qwater → ice = mcΔT

where:

m is the mass of the water (100 g),

c is the specific heat of water (4190 J/kg∙C°), and

ΔT is the change in temperature (22.0°C - 12.0°C = 10.0°C).

Substituting the given values into the equation, we have:

Qwater → ice = (0.1 kg) * (4190 J/kg∙C°) * (10.0°C) = 4190 J

The heat transferred from the water to the ice is equal to the heat gained by the ice, causing it to melt. The heat required to melt the ice can be calculated using the formula:

Qmelting = mLf

where:

m is the mass of the ice (9 g),

Lf is the latent heat of fusion for ice (3.34×10^5 J/kg).

Substituting the given values into the equation, we have:

Qmelting = (0.009 kg) * (3.34×10^5 J/kg) = 3010 J

Since the metal container is insulated and there is no heat exchange with the surroundings, the heat transferred from the water to the ice and the heat required to melt the ice must be equal. Therefore, we can equate the two equations:

Qwater → ice = Qmelting

4190 J = 3010 J

Now, we can solve for the specific heat of the metal container (cm) by rearranging the equation:

cm = Qwater → ice / (mwater * ΔTwater)

Substituting the known values, we get:

cm = (4190 J) / ((0.2 kg) * (10.0°C)) ≈ 2095 J/kg∙C°

Learn more about specific heat of a metal:

https://brainly.com/question/32791249

#SPJ11

8. You observe a star through a telescope.
What happens to the apparent wavelength of the star's light as it moves toward you?
a) It gets shorter.
b) It gets longer.
c) It stays the same.
9. Explain your answer.

Answers

8. The apparent

wavelength

of the star's light gets shorter when it moves towards you.

Explanation:The wavelength of light is a measure of the distance between two successive peaks (or troughs) of a wave. As an object, such as a star, moves towards an observer, the

distance

between each successive peak of light waves appears to be shortened. This causes the apparent wavelength of the star's light to decrease, resulting in what is called blue shift.In contrast, when an object such as a star is moving away from an observer, the distance between each

successive peak

of light waves appears to be lengthened, causing the apparent wavelength of the star's light to increase. This is known as redshift.9. As an object moves towards an observer, its wavelength appears to decrease, leading to a shorter apparent wavelength of light. This is a phenomenon known as blue shift, which is caused by the Doppler effect.

Learn more about

light

https://brainly.com/question/29994598

#SPJ11

The correct answer is Option a) It gets shorter. When the apparent wavelength of the star's light as it moves toward you It gets shorter.

8. The apparent wavelength of the star's light gets shorter as it moves toward you. This phenomenon is known as "Doppler effect." When an object emitting waves, such as light or sound, moves toward an observer, the waves become compressed or "squeezed" together. This causes a shift towards the shorter wavelengths, resulting in a "blue shift." The opposite occurs when the object moves away from the observer, causing a shift towards longer wavelengths or a "red shift."

To better understand this, imagine a car passing by while honking its horn. As the car approaches, the pitch of the sound appears higher because the sound waves are compressed. Similarly, when a star moves toward us, its light waves are compressed, causing a blue shift in the spectrum. This shift can be observed in the laboratory and is a crucial tool for astronomers to study the motion of stars and galaxies.

Learn more about wavelength

https://brainly.com/question/31143857

#SPJ11

lamp and a 30 02 lamp are connected in series with a 10 V battery. Calculate the following: a. the equivalent resistance Question 18 1 pts A 20 02 lamp and a 30 02 lamp are connected in series with a 10 V battery. Calculate the following: the current through the circuit

Answers

We can calculate the current through the circuit using Ohm's Law;i = V/RWhere, V is the potential difference applied across the circuit and R is the resistance of the circuit. Substituting the given values;i = 10 V / 50 Ω = 0.2 ATherefore, the current through the circuit is 0.2 A.

Given information:Two lamps - a 20 Ω lamp and a 30 Ω lamp are connected in series with a 10 V battery.To calculate: The equivalent resistance and current through the circuit.The equivalent resistance of the circuit is given by;Req = R1 + R2Where, R1 and R2 are the resistances of the lamps in the circuit.Substituting the given values;Req = 20 Ω + 30 Ω = 50 ΩThe equivalent resistance of the circuit is 50 Ω.Now, we can calculate the current through the circuit using Ohm's Law;i = V/RWhere, V is the potential difference applied across the circuit and R is the resistance of the circuit. Substituting the given values;i = 10 V / 50 Ω = 0.2 ATherefore, the current through the circuit is 0.2 A.

Learn more about Equivalent here,

https://brainly.com/question/12914569

#SPJ11

Other Questions
A primary source is recorded or created during an event that is under investigation. Analyzing primary sources is essential to the field of history. In this assignment, students will critically analyze a WRITTEN primary source on any topic of interest in the course outline.Guidelines:There are FOUR sections in this assignment:a. Author/purpose- Who wrote the source? What is the authors race, sex, class, occupation, religion, age, region, and political beliefs? Does any of this matter? How? Why did the author write the source and for whom?b. Evidence of the Past-What does this written source tell you about the topic of the week? What historical questions can you answer using this source? What questions can this source NOT help you answer?c. Context- When was this source created? What was happening politically, economically and socially in the country and/or region when the source was created? How does this influence the authors perspective?d. Relation to Other Sources-What other primary and secondary sources have you read on the topic you are analyzing? What do the sources say? Do the sources support or challenge the views of the author of the primary source? FILL THE BLANK.Wanda is turning 100 this year and is reflecting on her life. Her tendency to remember the once-a-year-visit from her son who lives out of town, rather than remembering all of the occasions he didnt travel to spend holidays with her is called ________.Group of answer choicessocio-emotional selectivity theorypositivity effectsatisfaction theorykinship effect Select the situations below that to contradict Pavlov's assertion that pairing a CS and US was enough for an association to develop? In other words, identify the situations where pairing does NOT lead to an association. (Select Multiple)A. Latent inhibitionB. Rats develop an aversion to a sweet tasting beverage if they get sick after drinking it.C. blockingD. Rats don't develop a taste aversion to rights and sounds after getting sick.E. The study where first a taste was paired with a tone. Later, the tone was paired with stomach sickness. Even though the tone was paired with stomach sickness, the rats avoid the taste, not the tone. I need help from someone trying to make a personal statement forme. I am trying to get into a master's program for OccupationalTherapy, and I need some time to attempt to start one. 6. How does work and the economy impact todays families? 1.Answer as True or False:True / False To the Greeks, mythswere historical and traditionalstories. True / False The Titans are theoffspring of Gaea and Eros. d/dx (x dy/dx) - 4x=0y(1)= y (2)=0"Copied answers devoteSolve the BVP in Problem 1 over the domain usinga) Ritz method after deriving the weak formulation. You cansuggest a suitable polynomial basis that satisfy the B.C. Use 2 basis functions.b) Petrov-Galerkin with PHI=x, and x 2provide matlab codes with anlaytical solution if possible" Find the measure of the indicated angle.99969892L120KNM64 When encountering other cultures, most ethnocultural groups will: a) Combine into larger, more simplified ethnocultural groups b) Remain distinct and intact Oc) Combine into larger ethnocultural groups, choosing only the positive aspects of each group d) Remain distinct, but take on subtle influences from the other groups sort (arrange) the 15 memories 3 times.First based on priceSecond based on capacityThird based on speed(1) F.D(1) W1 Cash(2) CD(3) DVD R (12) Registers(4) Tapes 13 Ropray. Types of Marones Making the familiar, strange. Choose a familiar culturalpractice that is a part of your culture and what makes it strangefor others write 400 words (Anthropology) Ethnographicactivity) Suppose the indifference curves of an individual are all such that their slope does not depend on the individual's income but does depend on the hours of leisure consumed. For every indifference curve, MRS = l$2156/ week where l is 'nonmarket time' (leisure) in hrs/week and the maximum 'nonmarket time' (leisure) is l=98hrs/ week [see WORKED EXAMPLE Working Part-Time at University (pp. 48-49) for a justification of this number]. a. The individual's non-labour income is $600/ week. Find her reservation wage. Get the number and explain how you've got it. (3) b. Would this individual's labour supply curve be upward-sloping at every wage or backward-bending? Explain how you know. An ac voltage is expressed as: (t) = 240cos(10nt -40) Determine the following: 1. RMS voltage = 2. frequency in Hz = 3. periodic time in seconds = 4. The average value = Design a PRAM program to calculate the AND function of n binary elements. Assume an exclusive writing scheme for accessing the memory. How many processors are required for your algorithm to work? Indicate where your input and output will be placed in the memory. the personality theory backed by strong research evidence ofpersonality traits that have been found across all cultures isthe? Read "Villanelle" by Victor James Daly. Then, answer the question that follows.We said farewell, my youth and I,When all fair dreams were gone or going,And Love's red lips were cold and dry.When white blooms fell from tree-tops high,Our Austral winter's way of snowing,We said farewell, my youth and I.We did not sigh, what use to sighWhen Death passed as a mower mowing,And Love's red lips were cold and dry?But hearing Life's stream thunder by,That sang of old through flowers flowing,We said farewell, my youth and I.There was no hope in the blue sky,No music in the low winds blowing,And Love's red lips were cold and dry.My hair is black as yet, then whySo sad! I know not, only knowingWe said farewell, my youth and I.All are not buried when they die;Dead souls there are through live eyes showingWhen Love's red lips are cold and dry.So, seeing where the dead men lie,Out of their hearts the grave-flowers growing,We said farewell, my youth and I,When Love's red lips were cold and dry.How does the form of the villanelle impact the meaning of Daly's poem?A) Repetition of two lines throughout emphasizes the point that the speaker grew up and lost hope when their heart was broken.B) Fourteen lines are divided into an octave about falling in love and a sestet about heartbreak. C)There is no rhyme scheme or meter, which makes the poem seem like an informational paragraph about growing old. D)The shift and the couplet explain that growing up is hard, but having good friends makes it much easier. Calculate the time period of an investment in a mutualfund that matured to $69,741.60 yielding interest of $13,242.64 at10.92% compounded monthly. steady state error ? for unit step function, ramp function and parabolic functionmatlab code 25 points since Im helping a friend 1. Define Selective Attention and explain what it is. Give examples and statistics from the Gorilla and Cell Phone articles.\2. From the TV Zombies article - explain what happens in our brain when we watch TV -then explain some of the negative consequences of spending too much time watching TV!3. From Chapter 3 in our text explain WHY we sleep.4. From Chapter 3 - explain what happens to us if we don't get our 7 to 8 hours of sleep.5. From the Optimism text (p.416-417) explain how one could effectively manage and deal with ANGER.