Acar of mass 1374 kg accelerates from rest to 15.2 m/s in 5.40 s. How much force was required to do this?

Answers

Answer 1

Answer: The force required to accelerate the a car is 3860.94 N.

Mass, m = 1374 kg

Initial Velocity, u = 0 m/s

Final Velocity, v = 15.2 m/s

Time, t = 5.40 s.

We can find the force applied using Newton's second law of motion.

Force, F = ma

Here, acceleration, a can be calculated using the formula: v = u + at

where, v = 15.2 m/s

u = 0 m/s

t = 5.40 s

a = (v-u)/t = (15.2 - 0) / 5.40

a = 2.81 m/s².

Hence, the acceleration of the a car is 2.81 m/s². Now, substituting the values in the formula F = ma, we get:

F = 1374 kg × 2.81 m/s²

F = 3860.94 N.

Thus, the force required to accelerate the a car is 3860.94 N.

Learn more about force : https://brainly.com/question/12785175

#SPJ11


Related Questions

A hydraulic jack has an input piston of area 0.050 m2 and ☆ an output piston of area 0.70 m2. If a force of 100 N is applied to the input piston, how much weight can the output piston lift?

Answers

The hydraulic jack utilizes the principle of Pascal's law to amplify force. The output piston can lift a weight of 1400 N when a force of 100 N is applied to the input piston, considering the given areas of the pistons.

Pascal's law states that the pressure exerted at any point in a confined fluid is transmitted equally in all directions. In the case of a hydraulic jack, this means that the pressure applied to the input piston will be transmitted to the output piston.

The pressure exerted on the fluid can be calculated by dividing the force applied by the area of the piston. In this case, the input piston has an area of 0.050 m^2, Calculate the pressure on the input piston:

Pressure = Force / Area

Pressure = 100 N / 0.050 m^2

Pressure = 2000 Pa (Pascals)

so the pressure exerted on the fluid is 100 N divided by 0.050 m^2, which is 2000 Pa (Pascal).

Since the pressure is transmitted equally, the same pressure will be exerted on the output piston. The output piston has an area of 0.70 m^2. Therefore, the force that can be generated on the output piston can be calculated by multiplying the pressure by the area of the piston. Calculate the force exerted by the output piston:

Force = Pressure × Area

Force = 2000 Pa × 0.70 m^2

Force = 1400 N In this case, the force is 2000 Pa multiplied by 0.70 m^2, which is 1400 N

Learn more about Pascal's law here:

https://brainly.com/question/1414149

#SPJ11

A certain dense flint glass has an an index of refraction of nr = 1.71 for red light and nb = 1.8 for blue light. White light traveling in air is incident at an angle of 33.0° onto this glass. What is the angular spread between the red and blue light after entering the glass?

Answers

The angular spread between the red light and blue light after entering the glass is 0.8°.

The formula for angular dispersion is given as;

Δθ = θb - θr Where,

Δθ is the angular spread

θb is the angle of refraction for blue light

θr is the angle of refraction for red light

In this case, the angle of incidence is θi = 33.0°

Therefore,θi = θr (for red light)θi = θb (for blue light)

The formula for the angle of refraction is given as;

θ = arcsin(sin θi/n) Where,

θ is the angle of refraction

θi is the angle of incidence

n is the refractive index

On substituting the values given in the problem statement, we get;

For red light, θr = arcsin(sin 33.0°/1.71)

θr = 19.9°

For blue light,θb = arcsin(sin 33.0°/1.8)

θb = 19.1°

Therefore, the angular spread is;

Δθ = θb - θrΔθ = 19.1° - 19.9°Δθ = -0.8°

Thus, the angular spread between the red and blue light after entering the glass is -0.8°.

Learn more about red light and blue light https://brainly.com/question/12771773

#SPJ11

An object is placed in front of a concave mirror (f=20 cm). If the image is as tall as the object, find the location of the object.

Answers

An object is placed in front of a concave mirror (f=20 cm). If the image is as tall as the object,the location of the object is 20 cm in front of the concave mirror.

To find the location of the object in front of a concave mirror, given that the image is as tall as the object, we can use the magnification equation for mirrors:

magnification (m) = height of the image (h_i) / height of the object (h_o) = -1

Since the image height (h_i) is given as the same as the object height (h_o), we have:

m = h_i / h_o = -1

This tells us that the image is inverted.

The magnification equation for mirrors can also be expressed in terms of the distance:

m = -di / do

Where di is the image distance and do is the object distance.

Since the magnification (m) is -1, we can set up the equation as follows:

-1 = -di / do

Simplifying the equation, we find:

di = do

This means that the image distance (di) is equal to the object distance (do). In other words, the object is placed at the same distance from the mirror as the location of the image.

Therefore, the location of the object is 20 cm in front of the concave mirror.

To learn more about magnification visit: https://brainly.com/question/30402564

#SPJ11

What are the benifits/risks associated with the radiation use of AM
and FM radios?

Answers

AM and FM radios use non-ionizing radiation, which means that it does not have enough energy to break chemical bonds in DNA. This type of radiation is generally considered to be safe, but there is some evidence that it may be linked to certain health problems, such as cancer.

The main benefit of AM and FM radios is that they provide a free and convenient way to listen to music, news, and other programming. They are also used in a variety of other applications, such as two-way radios, walkies-talkies, and baby monitors.

The main risk associated with AM and FM radios is that they may be linked to cancer. A study published in the journal "Environmental Health Perspectives" in 2007 found that people who were exposed to high levels of radio waves from AM and FM transmitters were more likely to develop brain cancer. However, it is important to note that this study was observational, which means that it cannot prove that radio waves caused the cancer.

Another potential risk associated with AM and FM radios is that they may interfere with medical devices, such as pacemakers and cochlear implants. If you have a medical device, it is important to talk to your doctor about whether or not it is safe for you to use an AM or FM radio.

Overall, the benefits of AM and FM radios are generally considered to outweigh the risks. However, if you are concerned about the potential risks, you may want to limit your exposure to radio waves.

Here are some additional tips for reducing your exposure to radio waves from AM and FM radios:

   Keep your radio away from your body.    Do not use a radio if it is damaged.    If you have a medical device, talk to your doctor about whether or not it is safe for you to use an AM or FM radio.

To learn more about pacemakers visit: https://brainly.com/question/10657794

#SPJ11

Which of the following are a unit vector? There is more than one, so test each of them. Carry out any math necessary to explain your answer. A. А / A B. î + y C. y +z / √2
D. x + y + z / √3

Answers

A unit vector is a vector with a length of 1. A, B, C, and D are unit vectors.

a) A / A

To determine if A / A is a unit vector, we must first determine A. The length of A is the square root of the sum of the squares of its components. If we square the vector A, we obtain:

A² = A · A = A² + B² + C²

= 5² + (-3)² + (-1)²

= 25 + 9 + 1

= 35

A = √35

To normalize A to a unit vector, we must divide it by its length. Thus:

A / A = (5, -3, -1) / √35

The length of this vector is:

√(5² + (-3)² + (-1)²) / √35

= √(35 / 35)

= √1

= 1

Therefore, the vector (5, -3, -1) / √35 is a unit vector.

b) î + y

The length of this vector is:

√(1² + y²)

To normalize this vector, we must divide it by its length. Thus:

î + y / √(1² + y²)

The length of this vector is:

√[1² + (y/√(1² + y²))²]

= √(1 + y² / 1 + y²)

= √1

= 1

Therefore, the vector î + y / √(1² + y²) is a unit vector.

c) y + z / √2

The length of this vector is:

√(y² + (z / √2)²)

To normalize this vector, we must divide it by its length. Thus:

y + z / √2 / √(y² + (z / √2)²)

The length of this vector is:

√[y² + (z / √2)²] / √(y² + (z / √2)²)

= √1

= 1

Therefore, the vector y + z / √2 / √(y² + (z / √2)²) is a unit vector.

d) x + y + z / √3

The length of this vector is:

√(x² + y² + (z / √3)²)

To normalize this vector, we must divide it by its length. Thus:

x + y + z / √3 / √(x² + y² + (z / √3)²)

The length of this vector is:

√[x² + y² + (z / √3)²] / √(x² + y² + (z / √3)²)

= √1

= 1

Therefore, the vector x + y + z / √3 / √(x² + y² + (z / √3)²) is a unit vector.

Answer: A, B, C, and D are unit vectors.

Learn more about unit vectors: https://brainly.com/question/28028700

#SPJ11

A copper wire is stretched with a stress of 50MPa at 20 ∘
C. If the length is held constant, to what temperature must the wire be heated to reduce the stress to 20MPa ? The value of α 1

for copper is 17.0×10 −6
( ∘
C) −1
, the modulus of elasticity is equal to 110 GPa. ∘
C

Answers

A copper wire is stretched with a stress of 50MPa at 20 ∘C. the change in temperature (ΔT') needed to reduce the stress to 20 MPa is equal to the initial temperature difference (ΔT).

To calculate the change in temperature (ΔT') needed to reduce the stress to 20 MPa, we need to use the values of the coefficient of linear expansion (α) for copper and the given values of stress (50 MPa and 20 MPa).

The coefficient of linear expansion for copper (α) is provided as 17.0 × 10^(-6) (°C)^(-1).

Let's assume the initial temperature of the copper wire is T1 and the final temperature is T2.

We can write the equation as:

ΔT' = (α * ΔT) / α'

Given:

α = 17.0 × 10^(-6) (°C)^(-1)

ΔT = T2 - T1

Since the stress is inversely proportional to the coefficient of linear expansion, we can write:

ΔT' = (α * ΔT1) / α2 = (α2 / α) * ΔT

Substituting the given values, we get:

ΔT' = (17.0 × 10^(-6) / 17.0 × 10^(-6)) * ΔT = ΔT

Therefore, the change in temperature (ΔT') needed to reduce the stress to 20 MPa is equal to the initial temperature difference (ΔT).

To find the actual temperature to which the copper wire must be heated, we would need to know the initial temperature (T1) of the wire.

Learn more about coefficient of linear expansion here:

https://brainly.com/question/14780533

#SPJ11

a) A 12-kVA, single-phase distribution transformer is connected to the 2300 V supply with resistances and leakage reactance of R1 = 3.96 2 R₂ = 0.0396 2, X₁= 15.8 2 and X₂ = 0.158 2. The iron loss is 420 W. The secondary voltage is 220 V. - (i) Calculate the equivalent impedance as referred to the high voltage side. (ii) Calculate the efficiency and maximum efficiency at 0.8 power factor. (7 marks) (12 marks) (b) A 3-phase, 4-pole, 50-Hz induction motor run at a speed of 1440 rpm. The total stator loss is 1 kW, and the total friction and winding losses is 2 kW. The power input to the induction motor is 40 kW. Calculate the efficiency of the motor.

Answers

(i) The equivalent impedance referred to the high voltage side is calculated as Z_eq = (0.0396 + j0.158) + ((220/2300)^2) * (3.96 + j15.8) Ω.(ii) The efficiency of the transformer can be calculated using η = (V₂ * I₂ * cos(θ)) / (V₁ * I₁), and the maximum efficiency at 0.8 power factor can be found by varying the power factor (θ) and calculating the efficiency for different values.

(i) To calculate the equivalent impedance as referred to the high voltage side, we need to account for the voltage ratio between the primary and secondary side of the transformer.

The equivalent impedance as referred to the high voltage side (Z_eq) can be calculated using the formula:

Z_eq = (Z₂ + (V₂/V₁)^2 * Z₁)

where Z₁ and Z₂ are the impedances on the primary and secondary side, respectively, and V₁ and V₂ are the primary and secondary voltages.

Given:

Z₁ = R₁ + jX₁ = 3.96 + j15.8 Ω

Z₂ = R₂ + jX₂ = 0.0396 + j0.158 Ω

V₁ = 2300 V

V₂ = 220 V

Substituting the values into the formula, we get:

Z_eq = (0.0396 + j0.158) + ((220/2300)^2) * (3.96 + j15.8)

(ii) To calculate the efficiency and maximum efficiency at 0.8 power factor, we need to consider the input and output power of the transformer.

The input power (Pin) can be calculated as:

Pin = VI * cos(θ)

The output power (Pout) can be calculated as:

Pout = VI * cos(θ) - iron loss - copper loss

Efficiency (η) can be calculated as:

η = Pout / Pin

To find the maximum efficiency, we need to vary the power factor (θ) and calculate the efficiency for different values.

(b) To calculate the efficiency of the motor, we need to consider the input power and the losses in the motor.

The input power (Pin) is given as 40 kW.

The total losses in the motor (Ploss) can be calculated as the sum of the stator loss and the friction and winding losses:

Ploss = 1 kW + 2 kW

The output power (Pout) is given by:

Pout = Pin - Ploss

Efficiency (η) can be calculated as:

η = Pout / Pin

Substituting the given values, we can calculate the efficiency of the motor.

To know more about voltage click here:

https://brainly.com/question/32002804

#SPJ11

Einstein's relation between the displacement Δx of a Brownian particle and the observed time interval Δt. (2) Einstein-Stokes equation for the diffusion coefficient. Explain the derivation process of each of all of them. In the answer emphasize what is the hypothesis (or assumption) and what is the result..

Answers

Einstein's relation states that the mean squared displacement of a Brownian particle is proportional to time.

The displacement Δx of a Brownian particle and the observed time interval Δt can be related by Einstein's relation, which states that the mean squared displacement is proportional to time: ⟨Δx²⟩ = 2Dt, where D is the diffusion coefficient.The derivation process of Einstein's relation:Assuming a particle undergoes random motion in a fluid, the equation of motion for the particle can be written as:F = maHere, F is the frictional force and a is the acceleration of the particle.

Since the acceleration of a Brownian particle is random, the mean value of a is zero. The frictional force, F, can be assumed to be proportional to the particle's velocity: F = -ζv, where ζ is the friction coefficient.Using the above equations, the equation of motion can be rewritten as:mv = -ζv + ξ, where ξ is the random force acting on the particle.The average of this equation of motion gives:⟨mv⟩ = -⟨ζv⟩ + ⟨ξ⟩

The left-hand side of this equation is zero, since the average velocity of the particle is zero. The average of the product of two random variables is zero. Therefore, the second term on the right-hand side of this equation is also zero. Thus, we have:0 = -⟨ζv⟩.

The frictional force can be related to the diffusion coefficient using the Einstein-Stokes equation: D = kBT/ζHere, kBT is the thermal energy, and ζ is the friction coefficient.The result of the above equation is:Δx² = 2DtTherefore, Einstein's relation states that the mean squared displacement of a Brownian particle is proportional to time.

Learn more about Brownian particle here:

https://brainly.com/question/15540555

#SPJ11

A current of 7.17 A in a long, straight wire produces a magnetic field of 3.41μT at a certain distance from the wire. Find this distance. distance:

Answers

A current of 7.17 A in a long, straight wire produces a magnetic field of 3.41μT at a certain distance from the wire.  the distance from the wire at which the magnetic field is 3.41 μT is approximately 0.0942 m, or 9.42 cm.

To determine the distance from the wire at which the magnetic field is 3.41 μT, we can use Ampere's Law, which relates the magnetic field around a current-carrying wire to the current and the distance from the wire.

Ampere's Law states that the magnetic field (B) at a distance (r) from a long, straight wire carrying current (I) is given by the equation:

B = (μ₀ * I) / (2π * r)

where μ₀ is the permeability of free space, which has a value of 4π × 10^(-7) T·m/A.

Rearranging the equation, we can solve for the distance (r):

r = (μ₀ * I) / (2π * B)

Substituting the given values, we have:

r = (4π × 10^(-7) T·m/A * 7.17 A) / (2π * 3.41 × 10^(-6) T)

Simplifying the equation, we find:

r = (4 * 7.17) / (2 * 3.41) × 10^(-7 - (-6)) m

r = 9.42 × 10^(-2) m

Therefore, the distance from the wire at which the magnetic field is 3.41 μT is approximately 0.0942 m, or 9.42 cm.

Learn more about magnetic field here:

https://brainly.com/question/30331791

#SPJ11

Sarah and Kasim are now ready to tackle the following problem. A constant horizontal force F of magnitude 0.5 N is applied to m1. If m1 = 1.0 kg and m2 = 0.57 kg, find the magnitude of the acceleration of the system of two blocks.

Answers

The magnitude of the acceleration of the system of the two blocks is 0.3185 m/s².

In the given scenario, a constant horizontal force F of magnitude 0.5 N is applied to m1. The magnitude of the acceleration of the system of two blocks needs to be calculated.

Acceleration is the rate of change of velocity of an object with respect to time. It is measured in m/s².

The acceleration of the system of two blocks can be determined as follows:

We know that force (F) is given by:

F = m × a,

where,

m is the mass of the object,

a is the acceleration produced by the force applied.

Let us first find the total mass of the system of two blocks:

Total mass of the system of two blocks,

m = m1 + m2= 1.0 kg + 0.57 kg= 1.57 kg

Now, let's calculate the acceleration of the system using the force formula:

F = m × a

⇒ a = F / m = 0.5 N / 1.57 kg = 0.3185 m/s²

Therefore, the magnitude of the acceleration of the system of two blocks is 0.3185 m/s².

Learn more about acceleration:

https://brainly.com/question/25876659

#SPJ11

If when an object is placed 20 cm in front of a mirror the image is located 13.6 cm behind the mirror, determine the focal length of the mirror.

Answers

The object is placed 20 cm in front of a mirror and the image is located 13.6 cm behind the mirror.

The formula for the focal length of a mirror is given by;

`1/f = 1/di + 1/do` Where, `f` is the focal length of the mirror, `di` is the distance of the image from the mirror, and `do` is the distance of the object from the mirror.

The given values are: `di = -13.6 cm` (negative sign indicates that the image is formed behind the mirror) `do = -20 cm` (negative sign indicates that the object is placed in front of the mirror) `f` is the unknown.

Let's substitute the given values in the formula.

`1/f = 1/di + 1/do`

`1/f = 1/-13.6 + 1/-20`

`1/f = -0.0735 - 0.05`

`1/f = -0.1235`

`f = 1/-0.1235`= -8.097

Therefore, the focal length of the mirror is approximately 8.1 cm.

Learn more about the focal length of lenses: https://brainly.com/question/1031772

#SPJ11

A heat engine does 25.0 JJ of work and exhausts 15.0 JJ of waste heat during each cycle.
Part A: What is the engine's thermal efficiency?
Part B: If the cold-reservoir temperature is 20.0°C°C, what is the minimum possible temperature in ∘C∘C of the hot reservoir?

Answers

A heat engine does 25.0 JJ of work and exhausts 15.0 JJ of waste heat during each cycle.(A)The engine's thermal efficiency is 0.625 or 62.5%.(B)The minimum possible temperature of the hot reservoir is 32.0°C.

To solve this problem, we can use the formula for thermal efficiency:

Thermal efficiency = (Useful work output) / (Heat input)

Part A: What is the engine's thermal efficiency?

Given:

Useful work output = 25.0 JJ

Heat input = Useful work output + Waste heat = 25.0 JJ + 15.0 JJ = 40.0 J

Thermal efficiency = (25.0 JJ) / (40.0 JJ) = 0.625

The engine's thermal efficiency is 0.625 or 62.5%.

Part B: If the cold-reservoir temperature is 20.0°C, what is the minimum possible temperature in °C of the hot reservoir?

To determine the minimum possible temperature of the hot reservoir, we can use the Carnot efficiency formula:

Carnot efficiency = 1 - (T_cold / T_hot)

Rearranging the formula, we have:

T_hot = T_cold / (1 - Carnot efficiency)

Given:

T_cold = 20.0°C

The Carnot efficiency can be calculated using the thermal efficiency:

Carnot efficiency = 1 - thermal efficiency = 1 - 0.625 = 0.375

Substituting the values into the equation:

T_hot = 20.0°C / (1 - 0.375) = 20.0°C / 0.625 = 32.0°C

The minimum possible temperature of the hot reservoir is 32.0°C.

To learn more about heat visit: https://brainly.com/question/934320

#SPJ11

) b) Give three advantages of digital circuit compared to analog. (3 marks)

Answers

Three advantages of digital circuits compared to analog circuits are: Noise Immunity, Signal Processing Capabilities and Storage and Reproduction

Noise Immunity: Digital circuits are less susceptible to noise and interference compared to analog circuits. Since digital signals represent discrete levels (0s and 1s), they can be accurately interpreted even in the presence of noise. This makes digital circuits more reliable and less prone to errors.

Signal Processing Capabilities: Digital circuits offer advanced signal processing capabilities. Digital signals can be easily manipulated, processed, and analyzed using algorithms and software. This enables complex operations such as data compression, encryption, error correction, and filtering to be performed accurately and efficiently.

Storage and Reproduction: Digital circuits allow for easy storage and reproduction of information. Digital data can be encoded, stored in memory devices, and retrieved without loss of quality or degradation. This makes digital circuits suitable for applications such as data storage, multimedia transmission, and digital communication systems.

To know more about digital circuits

https://brainly.com/question/24628790

#SPJ11

A particle is moving along a circle of radius r such that it complete 1 rev in 40 sec. What will be the displacement after 2 mint 20sec?

Answers

The displacement of the particle after 2 minutes 20 seconds cannot be determined without knowing the radius of the circle.

To find the displacement of a particle moving along a circle, we need to determine the angle it has covered in a given time.

Given:

Time taken to complete one revolution (T) = 40 seconds

Radius of the circle (r) = r (not provided)

Time for which we need to find the displacement (t) = 2 minutes 20 seconds = 2 * 60 + 20 = 140 seconds

To find the displacement after 2 minutes 20 seconds, we need to calculate the angle covered by the particle during this time.

One revolution (360 degrees) is completed in T seconds. Therefore, the angle covered in 140 seconds can be calculated as follows:

Angle covered = (Angle covered in one revolution) * (Number of revolutions)

Angle covered = (360 degrees) * (Number of revolutions)

To find the number of revolutions in 140 seconds, we can divide 140 by the time taken for one revolution (40 seconds):

Number of revolutions = 140 / 40 = 3.5

Substituting this value into the equation for the angle covered:

Angle covered = (360 degrees) * (3.5) = 1260 degrees

Now, the displacement of the particle can be found using the formula:

Displacement = 2 * pi * r * (Angle covered / 360 degrees)

Learn more about Displacement here :-

https://brainly.com/question/11934397

#SPJ11

Charges Q₁ = 4.32 μC and Q2 = 2.18 μC are separated by a distance r = 4 cm. What is the potential energy of the two charges? Show the SI units.

Answers

The potential energy between two charges, [tex]Q_1 = 4.32 \mu C[/tex] and [tex]Q_2 = 2.18 \mu C[/tex], separated by a distance of 4 cm is approximately 2.474 joules which are calculated by using the formula for electrical potential energy.

The potential energy between two charges can be determined using the formula:

[tex]U = (k * Q_1 * Q_2) / r[/tex]

where U represents the potential energy, [tex]Q_1[/tex] and [tex]Q_2[/tex] are the charges, r is the distance between the charges, and k is the electrostatic constant ([tex]k = 8.99 *10^9 Nm^2/C^2[/tex]).

In this case, [tex]Q_1= 4.32 \mu C[/tex] (microcoulombs) and [tex]Q_2 = 2.18 \mu C[/tex], and the distance r = 4 cm (or 0.04 m when converted to meters). Plugging these values into the formula, we can calculate the potential energy:

[tex]U = (8.99 * 10^9 Nm^2/C^2 * 4.32 * 10^-^6 C * 2.18 * 10^-^6 C) / 0.04 m\\U =2.474 J (joules)[/tex]

Therefore, the potential energy between the two charges is approximately 2.474 joules. The SI unit for potential energy is joules (J).

Learn more about potential energy here:

https://brainly.com/question/24284560

#SPJ11

Consider a monatomic ideal gas operating through the Carnot cycle. The initial volume of the gas is V1=205×10⁻³ m³. Part (a) What types of processes are going on for each step in this process?
V3 = ____________
Part (b) During the isothermal compression step, the volume of gas is reduced by a factor of 4 . In the adiabatic heating step, the temperature of the gas is doubled. What is the volume at point 3 , in cubic meters? V3= ________ Part (c) What is the volume at point 4 , in cubic meters?

Answers

The Carnot cycle consists of four processes, the volume at point 3 is 102.5 * 10^-3 mc and the volume at point 4 is 205 x 10^-3 m³.

a) The Carnot cycle consists of four processes:

Two Isothermal Processes (Constant Temperature)

Two Adiabatic Processes (No Heat Transfer)

The following steps are going on for each process in the Carnot cycle:

Process 1-2: Isothermal Expansion (Heat added to gas)

Process 2-3: Adiabatic Expansion (No heat transferred to gas)

Process 3-4: Isothermal Compression (Heat is removed from the gas)

Process 4-1: Adiabatic Compression (No heat transferred to gas)

b) Given that in the isothermal compression step the volume of gas is reduced by a factor of 4 and in the adiabatic heating step, the temperature of the gas is doubled; this means that

V2= V1/4,

V3= 2V2

V4 = V1.

So, V3 = 2V2 = 2 (V1/4) = 0.5V1

V3 = 0.5 * 205 * 10^-3 = 102.5 * 10^-3 mc)

Part (c)

The volume at point 4 is equal to the initial volume of the gas which is V1, thus V4 = V1 = 205 x 10^-3 m³

V4 = 205 x 10^-3 m³

Learn more about the Carnot cycle:

https://brainly.com/question/28562659

#SPJ11

what would happen if a permanent magnet is placed on top of a straight wire

Answers

When a permanent magnet is placed on top of a straight wire, a magnetic field is produced in the region surrounding the wire due to the motion of charges in the wire. The magnetic field produced by the wire interacts with the magnetic field of the permanent magnet and causes a force to be exerted on the wire.

The direction of the force is perpendicular to both the magnetic field and the current in the wire. If the wire is not fixed in place, it will experience a force and move in a direction that is perpendicular to both the magnetic field and the current in the wire. This phenomenon is known as the Lorentz force, which is the force that is exerted on a charged particle when it moves in an electromagnetic field.

The direction of the force is given by the right-hand rule, which states that if the thumb of the right hand points in the direction of the current, and the fingers point in the direction of the magnetic field, then the palm of the hand will point in the direction of the force. The magnitude of the force is proportional to the current in the wire and the strength of the magnetic field.

Therefore, the stronger the magnetic field or the current, the greater the force that is exerted on the wire. The Lorentz force is the basis for the operation of many devices such as motors, generators, and transformers.

For more such questions on magnetic field, click on:

https://brainly.com/question/7645789

#SPJ8

Two wires that have different linear mass densities, Mi = 0.45 kg/m and M2 = 0.27 kg/m , are spliced together. They are then used as a guy line to secure a telephone pole. Part A If the tension is 300 N, what is the difference in the speed of a wave traveling from one wire to the other?

Answers

we need to consider the wave speed equation and the relationship between tension, linear mass density, and wave speed.

Therefore, the difference in speed of a wave traveling from one wire to the other is approximately 7.52 m/s

The wave speed (v) on a string is given by the equation:

v = √(T/μ)

where T is the tension in the string and μ is the linear mass density of the string.

For the first wire with linear mass density M₁ = 0.45 kg/m and tension

T = 300 N, the wave speed v₁ is given by:

v₁ = √(T/M₁)

Similarly, for the second wire with linear mass density M₂ = 0.27 kg/m and tension T = 300 N, the wave speed v₂ is given by:

v₂ = √(T/M₂)

To calculate the difference in speed between the two wires, we subtract the smaller wave speed from the larger wave speed:

Δv = |v₁ - v₂| = |√(T/M₁) - √(T/M₂)|

Substituting the given values:

Δv = |√(300/0.45) - √(300/0.27)|

Δv = |√(666.67) - √(1111.11)|

Δv = |25.81 - 33.33|

Δv ≈ 7.52 m/s

Therefore, the difference in speed of a wave traveling from one wire to the other is approximately 7.52 m/s.

Learn more about tension here

https://brainly.com/question/14177858

#SPJ11

you watch a person chopping wood and note that after the last chop you hear it 2 seconds later. how far is the chopper?
less than 330m, more than 330m, 330m or no way to tell?

Answers

The chopper is 686 meters away from the listener.

When we hear any sound, it means sound waves are coming towards us, and our ears receive those waves. It travels through the air and then reaches to our ears. As sound waves travel through the air, they encounter obstacles that cause their energy to disperse. The speed of sound waves through the air depends on the temperature and the pressure of the air. In general, at room temperature, the speed of sound through the air is approximately 343 meters per second.

The given information can be used to find the distance between the chopper and the listener. To calculate the distance, we can use the following formula:

d = v × t

where, d is the distance, v is the speed of sound (343 m/s at room temperature), and t is the time taken to hear the sound.

We can calculate the distance using the given information: We are given that the sound was heard 2 seconds after the last chop.

Therefore, the time taken to hear the sound is t = 2 seconds.

Using the formula, we have: d = v × td = 343 × 2 = 686 meters.

To know more about meters visit:-

brainly.com/question/29438351

#SPJ11

A 60.0-kg skateboarder starts spinning with an angular velocity of 14 rad/s. By changing the position of her arms, the skater decreases her moment of inertia to half its initial value. What is the final angular velocity (rad/s) of the skater? Give your answer to a decimal.

Answers

The final angular velocity of the skater would be 28 rad/s.

The final angular velocity can be determined by the law of conservation of angular momentum.

As the moment of inertia decreased to half its initial value, the angular velocity of the skateboarder would increase to compensate for the change.

The law of conservation of angular momentum states that the angular momentum of a system is conserved if the net external torque acting on the system is zero.

Initial angular momentum = Final angular momentum

I1 * ω1 = I2 * ω2

Angular momentum is conserved here as there are no external torques acting on the system. The formula is as follows:

I1 * ω1 = 2I2 * ω2

Thus, the final angular velocity of the skater (ω2) can be found using the following formula:

ω2 = (I1 * ω1) / (2 * I2)

where,

I1 = initial moment of inertia = (1/2) * M * R^2= (1/2) * 60 kg * (0.5 m)^2= 7.5 kg.m^2

I2 = final moment of inertia = I1 / 2= 7.5 kg.m^2 / 2= 3.75 kg.m^2

ω1 = initial angular velocity = 14 rad/s

Substituting the given values,

ω2 = (I1 * ω1) / (2 * I2)= (7.5 kg.m^2 * 14 rad/s) / (2 * 3.75 kg.m^2)= 28 rad/s.

Therefore, the final angular velocity of the skater is 28 rad/s.

Learn more about angular velocity:

https://brainly.com/question/29566139

#SPJ11

A square pipe with a side length of 2 is being used in a hydraulic system. The flow rate through the pipe is 15 gallons/second. What is the velocity of the water (in. in./sec). There are 231 cubic inches in a gallon.

Answers

Question: A square pipe with a side length of 2 is being used in a hydraulic system. The flow rate through the pipe is 15 gallons/second. What is the velocity of the water (in. in./sec). There are 231 cubic inches in a gallon.

Answer: 866.25 inches/second

Explanation:

To calculate the velocity of water flowing through the square pipe, we can use the equation:

Velocity = Flow rate / Cross-sectional area

Step 1: Calculate the cross-sectional area of the square pipe.

The cross-sectional area of a square can be found by multiplying the length of one side by itself.

In this case, the side length of the square pipe is 2 units.

Cross-sectional area = 2 units * 2 units = 4 square units

Step 2: Convert the flow rate from gallons/second to cubic inches/second.

Given that there are 231 cubic inches in a gallon, we can convert the flow rate as follows:

Flow rate in cubic inches/second = Flow rate in gallons/second * 231 cubic inches/gallon

Flow rate in cubic inches/second = 15 gallons/second * 231 cubic inches/gallon

Flow rate in cubic inches/second = 3465 cubic inches/second

Step 3: Calculate the velocity of water.

Now, we can use the formula mentioned earlier to calculate the velocity:

Velocity = Flow rate / Cross-sectional area

Velocity = 3465 cubic inches/second / 4 square units

Velocity = 866.25 inches/second

Therefore, the velocity of water flowing through the square pipe is 866.25 inches/second.

A channel (assume rectangular) has a water depth of 1.9m, a width of 2.1m, a parameters of .04 for mannings number n, and has a value of 7.8m^3/s
a) solve for hydraulic radius and channel slope
b) determine the Froude number and if the flow is super or sub critical
c) If only the depth increases to a value of 2.3, what is the new discharge?
d) At critical flow, what is the depth? (advice: at critical flow h_o = 2/3E

Answers

a) Solving for Hydraulic radius and channel slope:

Given:

Depth (d) = 1.9 m

Width (w) = 2.1 m

Manning's number (n) = 0.04

Discharge (Q) = 7.8 m³/s

Hydraulic radius formula:

R = (w * d) / (w + 2d)

Substituting the given values:

R = (2.1 * 1.9) / (2.1 + 2 * 1.9) = 1.40 m

Slope formula:

S = (1 / n) * (Q² / (R^(4/3) * w))

Substituting the given values:

S = (1 / 0.04) * (7.8² / (1.4^(4/3) * 2.1)) = 0.0030 or 0.30%

b) Froude number and if the flow is supercritical or subcritical:

Froude number formula:

Fr = V / √(gD)

Where V is the velocity of flow, g is the gravitational acceleration (9.81 m/s²), and D is the depth of flow.

Substituting the given values:

Fr = Q / (w * d * √(g * d))

We know that the Froude number ranges from <1 to >1, where:

- If Fr < 1, then the flow is subcritical.

- If Fr = 1, then the flow is critical.

- If Fr > 1, then the flow is supercritical.

Substituting the given values, Fr = 0.35 < 1. So, the flow is subcritical.

c) New discharge when depth increases to 2.3 m:

Given:

New depth (d) = 2.3 m

The discharge formula is:

Q = (w * d / n) * R^(2/3) * S^(1/2)

Substituting the given values:

New Q = Q' = (2.1 * 2.3 / 0.04) * 1.4^(2/3) * 0.003^(1/2) = 16.52 m³/s

d) At critical flow, what is the depth?

At critical flow, the depth is given by:

h₀ = (2/3) * R

Substituting the given values:

h₀ = (2/3) * 1.4 = 0.93 m

Thus, the depth at critical flow is 0.93 m.

Learn more about Hydraulic

https://brainly.com/question/31453487

#SPJ11

An overhead East-West transmission line carries a current of 250. A in each of two parallel wires. The two wires are separated by 1.20 m, the northern wire carries current to the east, and the southern wire carries current to the west. (a) Please find the magnitude and the direction of the magnetic field at a point midway between the two wires. (Ignore the carth's magnetic field.) (b) Please find the magnitude and the direction of the magnetic field at a point that is 2.00 m below the point of part (a). (lgnore the earth's magnetic field.)

Answers

Answer: (a) The magnitude of the magnetic field at a point midway between the two wires is 1.20 × 10⁻⁵ T and the direction of the magnetic field is out of the page.

(b) The magnitude of the magnetic field at a point that is 2.00 m below the point of part (a) is 2.93 × 10⁻⁷ T and the direction of the magnetic field is out of the page.

(a) The magnitude of the magnetic field at a point midway between the two wires is 1.20 × 10⁻⁵ T and the direction of the magnetic field is out of the page.  Between two parallel current-carrying wires, the magnetic field has a direction that is perpendicular to both the direction of current flow and the direction that connects the two wires.

According to the right-hand rule, we can figure out the direction of the magnetic field. The right-hand rule says that if you point your thumb in the direction of the current and curl your fingers, your fingers point in the direction of the magnetic field. As a result, the northern wire's magnetic field is directed up, while the southern wire's magnetic field is directed down. Since the two magnetic fields have the same magnitude, they cancel each other out in the horizontal direction.

The magnetic field at the midpoint is therefore perpendicular to the plane formed by the two wires, and the magnitude is given by: B = (μ₀I)/(2πr) = (4π × 10⁻⁷ T · m/A) × (250 A) / (2π × 0.600 m) = 1.20 × 10⁻⁵ T.

The magnetic field is out of the page because the two magnetic fields are in opposite directions and cancel out in the horizontal direction.

(b) The magnitude of the magnetic field at a point that is 2.00 m below the point of part (a) is 2.93 × 10⁻⁷ T and the direction of the magnetic field is out of the page.

The magnetic field at a point that is 2.00 m below the midpoint is required. The magnetic field is inversely proportional to the square of the distance from the wires.

Therefore, the magnetic field at this point is given by: B = (μ₀I)/(2πr) = (4π × 10⁻⁷ T · m/A) × (250 A) / (2π × √(1.20² + 2²) m) = 2.93 × 10⁻⁷ T. The magnetic field at this point is out of the page since the wires are so far apart that they can be treated as two separate current sources. The field has the same magnitude as the field created by a single wire carrying a current of 250 A and located 1.20 m away.

Learn more about magnetic field : https://brainly.com/question/7645789

#SPJ11

A block of mass m=2.90 kg initially slides along a frictionless horizontal surface with velocity t 0

=1.50 m/s. At position x=0, it hits a spring with spring constant k=49.00 N/m and the surface becomes rough, with a coefficient of kinctic friction cqual to μ=0.300. How far Δx has the spring compressed by the time the block first momentanily contes to rest? Assame the pakative. direction is to the right.

Answers

Therefore, the spring has compressed 2.5 cm before the block comes momentarily to rest.

In this case, the kinetic energy of the block is dissipated into the spring energy and friction. The spring equation is given by,0 = m * v²/2 + k * x - f * x,where,m = mass of the block,v = velocity of the block before it collides with the spring,k = spring constant,x = compression of the spring,f = friction force.μ = friction coefficientf = μ * (mass of the block) * (acceleration due to gravity) = μ * m * gFrom this expression, the compression of the spring can be calculated as: x = (v²/2 + f * x) / k. For this particular case, the velocity of the block before it collides with the spring (v) is given by 1.5 m/s. The mass (m) is 2.9 kg and the spring constant (k) is 49 N/m. The coefficient of kinetic friction (μ) is 0.3. The acceleration due to gravity (g) is 9.8 m/s².Then, the friction force f is given by,f = μ * m * g = 0.3 * 2.9 * 9.8 = 8.514 NSubstitute all the values in the above expression, x = (1.5²/2 + 8.514 * x) / 49.Then, solving for x, we get x = 0.025 m = 2.5 cm. Therefore, the spring has compressed 2.5 cm before the block comes momentarily to rest.

To know more about horizontal surface visit:

https://brainly.com/question/14457006

#SPJ11

In cylindrical coordinates, the disk r ≤ a , z = 0 contains charge with non-uniform density ps(r, ϕ). Use appropriate special Gaussian surfaces to find approximate values of D on the z axis: ( a ) very close to the disk ( O < z << a ) , ( b ) very far from the disk ( z >>a ) . Response: a) (ps(0,ϕ))/2 b) Q/(4πz^2) where q is shown in the image
Q = ʃ2π ʃa
Ps(r,θ) r dr d θ
ʃ0 ʃ0

Answers

The very far from the disk, the approximate value of D on the z-axis is zero.

To find the approximate values of D on the z-axis for the given scenarios, we can use appropriate Gaussian surfaces.

a) Very close to the disk (O < z << a):

In this case, we can consider a cylindrical Gaussian surface of radius r and height dz, centered on the z-axis and very close to the disk. The disk lies in the xy-plane, and its charge density is given by ps(r, ϕ).

Using Gauss's law, we have:

∮ D · dA = Q_enclosed

Since the electric field D is radially directed and the Gaussian surface is cylindrical, the dot product D · dA simplifies to D · dA = D(2πr dz).

The enclosed charge Q_enclosed is the charge within the cylindrical Gaussian surface, which is given by:

Q_enclosed = ∫∫ ps(r, ϕ) r dr dϕ

Applying Gauss's law, we get:

D(2πr dz) = ∫∫ ps(r, ϕ) r dr dϕ

Since ps(r, ϕ) is non-uniform, we cannot simplify the integral further. However, in the limit of dz approaching zero, the contribution from ps(r, ϕ) to the integral becomes negligible. Therefore, we can approximate the integral as ps(0, ϕ) multiplied by the area of the disk, which is πa^2:

D(2πr dz) ≈ ps(0, ϕ) πa^2

Dividing both sides by 2πr dz, we get:

D ≈ ps(0, ϕ) πa^2 / (2πr dz)

D ≈ (ps(0, ϕ) a^2) / (2r dz)

Since we are interested in the value of D on the z-axis (r = 0), we have:

D ≈ (ps(0, ϕ) a^2) / (2(0) dz)

D ≈ (ps(0, ϕ) a^2) / 0

As the denominator approaches zero, we can approximate D as:

D ≈ (ps(0, ϕ) a^2) / 0 = ∞

Therefore, very close to the disk, the approximate value of D on the z-axis is infinite.

b) Very far from the disk (z >> a):

In this case, we can consider a cylindrical Gaussian surface of radius R and height dz, centered on the z-axis and very far from the disk. The disk lies in the xy-plane, and its charge density is given by ps(r, ϕ).

Using Gauss's law, we have:

∮ D · dA = Q_enclosed

Since the electric field D is radially directed and the Gaussian surface is cylindrical, the dot product D · dA simplifies to D(2πR dz).

The enclosed charge Q_enclosed is the charge within the cylindrical Gaussian surface, which is given by:

Q_enclosed = ∫∫ ps(r, ϕ) r dr dϕ

Applying Gauss's law, we get:

D(2πR dz) = ∫∫ ps(r, ϕ) r dr dϕ

Similar to the previous case, in the limit of dz approaching zero, the contribution from ps(r, ϕ) to the integral becomes negligible. Therefore, we can approximate the integral as ps(0, ϕ) multiplied by the area of the disk, which is πa^2:

D(2πR dz) ≈ ps(0, ϕ) πa^2

Dividing both sides by 2πR dz, we get:

D ≈ ps(0, ϕ) πa^2 / (2πR dz)

D ≈ (ps(0, ϕ) a^2) / (2R dz)

Since we are interested in the value of D on the z-axis (R = ∞), we have:

D ≈ (ps(0, ϕ) a^2) / (2(∞) dz)

D ≈ (ps(0, ϕ) a^2) / (∞)

As the denominator approaches infinity, we can approximate D as:

D ≈ (ps(0, ϕ) a^2) / ∞ = 0

To know more about Gauss's law

https://brainly.com/question/13434428

#SPJ11

An L=51.0 cm wire is moving to the right at a speed of v=7.30 m/s across two parallel wire rails that are connected on the left side, as shown in the figure. The whole apparatus is immersed in a uniform magnetic field that has a magnitude of B=0.770 T and is directed into the screen. What is the emf E induced in the wire? E= The induced emf causes a current to flow in the circuit formed by the moving wire and the rails. In which direction does the current flow around the circuit? counterclockwise clockwise If the moving wire and the rails have a combined total resistance of 1.35Ω, what applied force F would be required to keep the wire moving at the given velocity? Assume that there is no friction between the movino wire and the rails

Answers

In the given scenario, a wire of length L = 51.0 cm is moving to the right at a speed of v = 7.30 m/s across two parallel wire rails immersed in a uniform magnetic field B = 0.770 T directed into the screen.

The objective is to determine the induced emf E in the wire, the direction of the current flow in the circuit, and the applied force F required to maintain the wire's velocity.  

In Part A, to calculate the induced emf E, we can use Faraday's law of electromagnetic induction, which states that the induced emf is equal to the rate of change of magnetic flux through the wire. The magnetic flux is given by the product of the magnetic field, the length of the wire, and the sine of the angle between the magnetic field and the wire's motion.

In Part B, to determine the direction of the current flow in the circuit, we can apply Lenz's law, which states that the induced current will flow in a direction that opposes the change in magnetic flux.

In Part C, to find the applied force F required to maintain the wire's velocity, we can use the equation F = BIL, where I is the current flowing through the wire and L is the length of the wire. We can solve for I using Ohm's law, I = E/R, where R is the total resistance of the circuit.

Learn more about Faraday's law here:

https://brainly.com/question/1640558

#SPJ11

A monochromatic source emits a 6.3 mW beam of light of wavelength 600 nm. 1. Calculate the energy of a photon in the beam in eV. 2. Calculate the number of photons emitted by the source in 10 minutes. The beam is now incident on the surface of a metal. The most energetic electron ejected from the metal has an energy of 0.55 eV. 3. Calculate the work function of the metal.

Answers

The power emitted by a monochromatic source is 6.3 m Wavelength of light emitted by the source is 600 nm.

1. Energy of photon, E = hc/λ

where, h = Planck's constant = 6.63 × 10⁻³⁴ Js, c = Speed of light = 3 × 10⁸ m/s, λ = wavelength of light= 600 nm = 600 × 10⁻⁹ m

Substitute the values, E = (6.63 × 10⁻³⁴ J.s × 3 × 10⁸ m/s)/(600 × 10⁻⁹ m) = 3.31 × 10⁻¹⁹ J1 eV = 1.6 × 10⁻¹⁹ J

Hence, Energy of photon in eV, E = (3.31 × 10⁻¹⁹ J)/ (1.6 × 10⁻¹⁹ J/eV) = 2.07 eV (approx.)

2. The power is given by,

P = Energy/Time Energy, E = P × Time Where P = 6.3 mW = 6.3 × 10⁻³ W, Time = 10 minutes = 10 × 60 seconds = 600 seconds

E = (6.3 × 10⁻³ W) × (600 s) = 3.78 J

Number of photons emitted, n = E/Energy of each photon = E/E1 = 3.78 J/3.31 × 10⁻¹⁹ J/photon ≈ 1.14 × 10²¹ photons

3. The work function (ϕ) of a metal is the minimum energy required to eject an electron from the metal surface. It is given by the relation, K max = hv - ϕ where Kmax = Maximum kinetic energy of the ejected electron, v = Frequency of the incident radiation (v = c/λ), and h = Planck's constant.

Using Kmax = 0.55 eV = 0.55 × 1.6 × 10⁻¹⁹ J, h = 6.63 × 10⁻³⁴ Js, λ = 600 nm = 600 × 10⁻⁹ m,v = c/λ = 3 × 10⁸ m/s ÷ 600 × 10⁻⁹ m = 5 × 10¹⁴ s⁻¹.

Substituting all the values in the above formula,ϕ = hv - Kmaxϕ = (6.63 × 10⁻³⁴ Js × 5 × 10¹⁴ s⁻¹) - (0.55 × 1.6 × 10⁻¹⁹ J)ϕ ≈ 4.3 × 10⁻¹⁹ J

Therefore, the work function of the metal is approximately equal to 4.3 × 10⁻¹⁹ J.

Explore another question on work function of metals: https://brainly.com/question/19427469

#SPJ11

How would you determine today’s activity,N1 of a source for which you have a calibration certificate with an original activity, N0 at a time interval, td, in the past?

Answers

By plugging in the appropriate values, you can calculate today's activity (N1) of the radioactive source. To determine today's activity (N1) of a radioactive source for which you have a calibration certificate with an original activity (N0) at a time interval (td) in the past, you can use the concept of radioactive decay and the decay constant.

The decay of a radioactive source follows an exponential decay law, which states that the activity of a radioactive sample decreases with time according to the equation:

N(t) = N0 * e^(-λt)

Where:

N(t) is the activity of the source at time t.

N0 is the original activity of the source.

λ is the decay constant.

t is the time elapsed.

The decay constant (λ) is related to the half-life (T½) of the radioactive material by the equation:

λ = ln(2) / T½

To determine today's activity (N1), you need to know the original activity (N0), the time interval (td), and the half-life of the radioactive material.

Here are the steps to calculate today's activity:

Determine the decay constant (λ) using the half-life (T½) of the radioactive material.

Calculate the time elapsed from the calibration date to today, which is td.

Use the formula N(t) = N0 * e^(-λt) to calculate N1, where N0 is the original activity and t is the time elapsed (td).

By plugging in the appropriate values, you can calculate today's activity (N1) of the radioactive source.

To know more about the radioactive source

brainly.com/question/12741761

#SPJ11

An electron is
-a particle and a wave, or at least behaves as such.
-a particle and a wave, or at least behaves as such, which is referred to as the electromagnetic spectrum.
-a particle, as opposed to electromagnetic radiation, which consists of waves.
-the nucleus of an atom, with the protons orbiting around it.

Answers

An electron is a particle and a wave, or at least behaves as such. Hence the correct answer is option a.

An electron possesses characteristics such as mass (or lack thereof) and electric charge. On the other hand, electromagnetic radiation is defined by its frequency and wavelength. While electrons are particles and not waves, they can exhibit wave-like properties, leading to their classification as both particles and waves.

Electromagnetic radiation, on the other hand, refers to the type of energy that travels through space. It is characterized by its frequency and wavelength. The electromagnetic spectrum encompasses the entire range of frequencies of electromagnetic radiation, spanning from low-frequency radio waves to high-frequency gamma rays. Electrons, being particles, do not fall within the realm of electromagnetic radiation. However, due to their wave-particle duality, they can possess wave-like characteristics.

The nucleus of an atom is composed of protons and neutrons, which are held together by the strong nuclear force. Electrons, in turn, orbit around the nucleus in shells or energy levels, depending on their energy state. Electrons carry a negative charge, while protons bear a positive charge, and neutrons have no charge. The number of protons within the nucleus determines the element to which the atom belongs.

Learn more about the properties of electrons:

https://brainly.com/question/7205313

#SPJ11

A thin lens with a focal length of +10.0 cm is located 2.00 cm in front of a spherical mirror with a radius of -18.0 cm. Find (a) the power, (b) the focal length, (c) the principal point, and (d) the focal point of this thick-mirror optical system.

Answers

(a) The power of the thick mirror optical system will be 13.89 D.

(b) The focal length of the thick mirror optical system will be 7.20 cm.

(c) The principal point of the thick mirror optical system will be 6.89 cm to the left of the mirror.

(d) The focal point of the thick mirror optical system will be 3.60 cm to the right of the mirror.

Lens formula:

1/f = 1/u + 1/v

where, f = focal length, u = object distance, v = image distance

Mirror formula:

1/f = 1/u + 1/v

where, f = focal length, u = object distance, v = image distance

Power formula:

P = 1/f

where, P = power, f = focal length

(a) Power of the thick mirror optical system will be;focal length of the lens = +10.0 cm

Power of the lens = 1/f = 1/10 = 0.10 D

focal length of the mirror = -18.0 cm

Power of the mirror = 1/f = 1/-18 = -0.056 D

Power of the thick mirror optical system = (Power of the lens) + (Power of the mirror)= 0.10 - 0.056= 0.044 D

P = 1/f = 1/0.044 = 22.72 D

Therefore, the power of the thick mirror optical system will be 13.89 D.

(b) The focal length of the thick mirror optical system will be;

1/f = 1/f1 + 1/f2

where, f1 = focal length of the lens, f2 = focal length of the mirror

1/f = 1/10 + 1/-18= (18 - 10) / (10 * -18) = -1/7.2f = -7.2 cm

Therefore, the focal length of the thick mirror optical system will be 7.20 cm.

(c) The principal point of the thick mirror optical system will be;P.

P. lies in the middle of the lens and mirror;

Distance of the principal point from the lens = 10.0 cm + 2.00 cm = 12.0 cm

Distance of the principal point from the mirror = 18.0 cm - 2.00 cm = 16.0 cm

Distance of the principal point from the lens = Distance of the principal point from the mirrorP.

P. is 6.89 cm to the left of the mirror

Therefore, the principal point of the thick mirror optical system will be 6.89 cm to the left of the mirror.

(d) The focal point of the thick mirror optical system will be;

The focal point lies in the middle of the lens and mirror;

Distance of the focal point from the lens = 10.0 cm - 2.00 cm = 8.00 cm

Distance of the focal point from the mirror = 18.0 cm + 2.00 cm = 20.0 cm

Distance of the focal point from the lens = Distance of the focal point from the mirror

Focal point is 3.60 cm to the right of the mirror

Therefore, the focal point of the thick mirror optical system will be 3.60 cm to the right of the mirror.

Learn more about focal length https://brainly.com/question/1031772

#SPJ11

Other Questions
By using the Biot and Savart Law, i.e. dB - Hoids sin e 4 r? (1) written with the familiar notation, find the magnetic field intensity B(O) at the centre of a circular current carrying coil of radius R; the current intensity is i; is the permeability constant, i.e. = 4 x 107 in SI/MKS unit system) (2) b) Show further that the magnetic field intensity B(z), at an altitude z, above the centre of the current carrying coil, of radius R, is given by B(z) HiR 2(R? +z)"? c) What is B(0) at z=0? Explain in the light of B(0), you calculated right above. d) Now, we consider a solenoid bearing N coils per unit length. Show that the magnetic field intensity B at a location on the central axis of it, is given by B =,iN; Note that dz 1 (R? +z+)#2 R (R? +z)12 *( Z (5) e) What should be approximately the current intensity that shall be carried by a solenoid of 20 cm long, and a winding of 1000 turns, if one proposes to obtain, inside of it, a magnetic field intensity of roughly 0.01 Tesla? According to prison abolitionists which statement true? Prisons are tool of racial capitalist control aimed at poor Black and brown people who are being displaced by the restructuring economy b. All of the other answers. Communities are made safer when they are economically secure, and people s lives are valued: d. Prisons don't make US safer because they don't actually address the root causes of harm and disorder. QuestionAkwaaba Trustees Limited (ATL) has been in operations since 2000 with big portfolios across Ghana and West Africa. The sole aim of ATL is to provide financial services to customers and clients.Due to the socio-economic impact of COVID and the Russia-Ukraine war, ATL like most companies in Ghana is experiencing marginal contributions as a result of the negative indicators and economic downturns on the local and international markets.As a business solution expert working for one of the key consulting firms in Ghana, prominent for undertaking company revivals within the Trustee industry, recommend a plan on how to turn the business fortunes around of Akwaaba Trustees Limited amidst the current challenges it faces. Use the dictionary entry for charisma to answer the question.charismacharisma [kuh-riz-muh] adjfrom Greek charis1. a magnetic charm that appeals to peopleIn which sentences is the word charisma used correctly? Select three answers.Most people seemed to respond to the candidates charisma rather than to his political agenda.Benjamin was overwhelmed by his co-workers charisma, and he promised to repay him as soon as possible.Alyssas acting talent was not great, but she hoped her charisma would secure her a role in the play.Though Farhan could be charming, he knew that he could not rely on his charisma to get the job.Julio used his charisma to haul the leaky boat and its soggy passengers out of the water. A 6.5kHz audio signal is sampled at a rate of 15% higher than the minimum Nyquist sampling rate. Calculate the sampling frequency. If the signal amplitude is 8.4 V pp(peak to peak value) and to be encoded into 8 bits, determine the: a) number of quantization level, b) resolution, c) transmission rate and d) bandwidth. What are the effects if the quantization level is increased? 5. Let X, XX, be independent and identically distributed random variables, each with the Rayleigh PDF given fx(x) (2x exp(-x), {o, x 20 otherwise (a) Find the moment generating function of Xand, hence, that Y =) (b) Find the exact PDF of Y=X. (c) Find the approximate PDF of Y=E, X7 based on the CLT. given green highlighted is user input.calculate the actual dry mass (Kg) using the basis givenMass Desired Wet Mix Dry basis Required (Kg) Mix (Kg) 200 120.00 MC% H20 MC% Initial of Desired Required Dry % of MC%of actual of actual (Kg) basis 7.00% 25.00% basis 25.00% 28.8 45.00% Mass wet basis 5.2 General Characteristics of Transfer Functions P5.2.1 Develop the transfer function for the effect of u on y for the following differential equations, assuming u(0)=0, y(0)-0 and y'(0)-0.6 6 *c. Classify the following events as mostly systematic or mostly unsystematic and tell us why. Is the distinction clear in each case?a) Short term interest rates increase unexpectedlyb) The interest rate a company pays on its short term debt borrowing is increased by its bank. c) Oil prices unexpectedly declined) An oil tanker ruptures, creating a large oil spille) A manufacturer loses a multimillion dollar product liability suitf) A Supreme Court decision substantially broadens producer liability for injuries suffered by product users Assume we have two matrices: P and Q which are nxn and invertible. Use the fact below to find an expression for P^1in terms of Q :(3P^Q1)^1=(P^1Q)^ Chester enters into a contract to buy a car from Mafioso Motorcars. Chester only bought the car because Tony Tomato, the salesman told Chester he would sleep with the fishes if he did not sign the contract. Chester makes 36 of the 60 monthly payments under the contract before he decides to challenge the contract on the grounds of duress. In the lawsuit witnesses will probably disappear Tony Tomato should argue ratification Tony Tomato should argue rescission Tony Tomato should argue the plain meaning rule Tony Tomato should argue the parol evidence rule Bay Be Sugar enters into an unambiguous written contract with Big Daddy for a $5,000 a month allowance and payment of her student loan in exchange for her (platonic) company on Tuesday and Friday nights. Big Daddy proposes an oral amendment to the contract: Sugar will go to a Neil Diamond concert with him, and he will buy her some Jimmy Choo shoes. After Sugar suffersthrough the concert, Daddy doesn't buy the shoes. In a breach of contract action Sugar has a persuasive argument because she had to miss her Business Law class to attend the concert Daddy will win because the promise was illusory Sugar will lose because of the parol evidence rule Sugar will lose because of the Statute of Frauds Daddy will win because he can afford better lawyers The Sixth Amendment to the United States Constitution is made applicable to the states through the due process clause of the Fifth Amendment through the Tenth Amendment through the due process clause of the Fourteenth Amendment the Sixth Amendment does not apply to the states because of federalism through the Fifth amendment SpawnSanto Corporation has been criminally charged with corporate fraud and a representative must appear in court to testify on behalf of the corporation. The representative wants to assert the 5th amendment privilege against self-incrimination. This will Be allowed, because corporations are people too Not be allowed because the 5 th amendment privilege can only be asserted by individuals Not be allowed because of the privileges and immunities clause Be allowed, but only if the corporation agrees Be allowed if SpawnSanto made a large campaign contribution to the judge HELP PLEASE Would you be in favor of immigration caps on people entering the state of Tx? Why or why not?(THIS IS GOVERNMENT CLASS) The file 1902 is a weather record dataset collected from one station in U.S. in 1902. Each record is a line in the ASCII format. The following shows one sample line with some of the salient fields annotated. This file is available on the Moodle site of this subject. The objective of this task is to extract some useful information from the file in Spark-shell, perform basic aggregations and save the data into HBase. All operations must be completed in the BigDataVM virtual machine for ISIT312. Download the file to the VM, start Hadoop key services, and upload it to HDFS. Create a script scalascript3.txt in Text Editor (gedit) which implements the following Spark-shell operations: (1) Create a DataFrame named weatherDF based on 1092 with the following fields: # the first 25 characters as a record identifier USAF weather station identifier < month: String> # air temperature (2) Compute (and return) the maximum, minimum and average temperatures for each month in weatherDF. (You can use DataFrame operations or SQL statements.) Deliverables A script scalascript3. txt and a PDF report report3.pdf that summarises all of your Bash and HBase input (except the operations in scalascript3 . txt) and output. The script scalascript3. txt must be executable in Spark-shell. The PDF report must demonstrate your correct operations and results of this task. People who commit the ad hominem personal attack fail torecognize the difference between the qualities/characteristics of aperson and the qualities/characteristics of a persons argument,beliefs, required rate of return is16%. You have boen asked to chmhurs a shire voliature 1. What should the current value of Impossible food's shares boz shore wotkings (4 warks) 2. If the market price of the share is$50, is the share over-priced, uncher-priced ot think pricest Nitrogen from a gaseous phase is to be diffused into pure iron at 700C. If the surface concentration is maintained at 0.1 wt% N. The nitrogen diffusion in BCC iron follows the interstitial diffusion mechanism with the pre-exponential parameter 0.17105 m2/s and the activation energy 90 kJ/mol. What will be the concentration at 1 mm from the surface after 10 h? In Linux Create a directory named sourcefiles in your home directory.Question 1.Create a shell script file called q1.shWrite a script that would accept the two strings from the console and would display a message stating whether the accepted strings are equal to each other.Question 2.Create a shell script file called q2.shWrite a bash script that takes a list of files in the current directory and copies them as into a sub-directory named mycopies.Question 3.Create a shell script file called q3.shWrite a Bash script that takes the side of a cube as a command line argument and displays the volume of the cube.Question 4.Create a shell script file called q4.shCreate a script that calculates the area of the pentagon and Octagon.Question 5.Create a shell script file called q4.shWrite a bash script that will edit the PATH environment variable to include the sourcefiles directory in your home directory and make the new variable global.PLEASE PROVIDE SCREENSHOTS AS PER QUESTION Consider non-premixed combustion of CH4 in an atmosphere (air) containing 3/4 of N2 and1/4 of O2 by mass. The initial temperature of the reactants is 25C. 1. Write a balanced stoichiometric reaction equation that completely converts the fuel into combustion products (H2O and CO2). In the following spherical pressure vessle, the pressure is 45 ksi, outer radious is 22 in. and wall thickness is 1 in, calculate: 1. Lateral 01 and longitudinal a2 normal stress 2. In-plane(2D) and out of plane (3D) maximum shearing stress. Can you give me the gitlog output and makefile for this C program. The program file is called mathwait.c#include #include #include #include #include int main(int argc, char *argv[]){printf("I am: %d\n", (int) getpid());pid_t pid = fork();printf("fork returned: %d\n", (int) pid);if (pid < 0) {perror("Fork failed");}if (pid == 0) {printf("Child process with pid: %d\n", (int) getpid());printf("Child process is exiting\n");exit(0);}printf("Parent process waiting for the child process to end\n");wait(NULL);printf("parent process is exiting\n");return(0);}