The acceleration of the box is 2 m/s².
To determine the acceleration of the box, we need to consider the net force acting on it. The net force is the vector sum of all the forces acting on the box.
In this case, the force applied by the student is 20 N forward, while the force of sliding friction is 10 N backward. Since the forces are in opposite directions, we need to subtract the frictional force from the applied force to find the net force:
Net force = Applied force - Frictional force
= 20 N - 10 N
= 10 N
Now, we can apply Newton's second law of motion, which states that the acceleration of an object is directly proportional to the net force applied and inversely proportional to its mass.
Net force = mass * acceleration
Rearranging the equation to solve for acceleration, we have:
Acceleration = Net force / mass
= 10 N / 5 kg
= 2 m/s²
Therefore, the acceleration of the box is 2 m/s².
For more questions on force, click on:
https://brainly.com/question/12785175
#SPJ8
Two spaceships are moving away from Earth in opposite directions, one at 0.83*c, and one at 0.83*c (as viewed from Earth). How fast does each spaceship measure the other one going? (please answer in *c).
The first spaceship heads to a planet 10 light years from Earth. Observers on Earth thus see the trip taking 12.04819 years. How long do people aboard the first spaceship measure the trip? (please answer in years)
The speed at which each spaceship measures the other one moving can be calculated using the relativistic velocity addition formula. The duration of the trip as measured by people aboard the first spaceship can be determined using time dilation formula.
According to special relativity, the relativistic velocity addition formula states that the velocity of one object as measured by another object is given by v' = (v + u) / (1 + vu/c^2), where v is the velocity of the object being measured, u is the velocity of the observer, and c is the speed of light.
For the first spaceship, its velocity as measured by observers on Earth is 0.83*c. Using the relativistic velocity addition formula, we can calculate the velocity at which the first spaceship measures the second spaceship. Plugging in v = 0.83*c and u = 0.83*c, we get v' = (0.83*c + 0.83*c) / (1 + 0.83*0.83) = 1.27*c. Similarly, the velocity at which the second spaceship measures the first spaceship can be calculated as 1.27*c.
Regarding the duration of the trip, time dilation occurs when an object is moving relative to an observer. The time dilation formula states that the dilated time (T') is related to the proper time (T) by T' = T / √(1 - v^2/c^2), where v is the velocity of the moving object and c is the speed of light.
In this case, the trip from Earth to the planet takes 12.04819 years as measured by observers on Earth (proper time). To find the duration of the trip as measured by people aboard the first spaceship, we can use the time dilation formula. Plugging in T = 12.04819 years and v = 0.83*c, we can calculate T', which represents the time measured by people aboard the first spaceship.
Learn more about spaceship here:
https://brainly.com/question/14198872
#SPJ11
An object is placed 45 cm to the left of a converging lens of focal length with a magnitude of 25 cm. Then a diverging lens of focal length of magnitude 15 cm is placed 35 cm to the right of this lens. Where does the final image form for this combination? in cm with appropriate sign with respect to diverging lens, real of virtual image?(make sure to answer this last part)
The image distance for the diverging lens (v_diverging) will be the object distance for the converging lens (u_converging). Using the values obtained for v_converging and v_diverging, we can determine the final image distance and whether it is a real or virtual image.
To find the final image formed by the combination of lenses, we can use the lens formula and the concept of image formation.
Let's consider the converging lens first. The lens formula is given by:
1/f_converging = 1/v_converging - 1/u_converging
where f_converging is the focal length of the converging lens, v_converging is the image distance, and u_converging is the object distance.
Given that the object is placed 45 cm to the left of the converging lens (u_converging = -45 cm) and the focal length of the converging lens is 25 cm (f_converging = 25 cm), we can calculate v_converging.
1/25 = 1/v_converging - 1/(-45)
Simplifying this equation will give us the value of v_converging.
Now let's consider the diverging lens. The lens formula for the diverging lens is:
1/f_diverging = 1/v_diverging - 1/u_diverging
where f_diverging is the focal length of the diverging lens, v_diverging is the image distance, and u_diverging is the object distance.
In this case, the object is placed 35 cm to the right of the diverging lens (u_diverging = 35 cm) and the focal length of the diverging lens is 15 cm (f_diverging = -15 cm, negative because it's a diverging lens).
Using the lens formula, we can calculate v_diverging.
Now, to determine the final image formed by the combination of lenses, we need to consider the relative position of the two lenses. Since the diverging lens is placed to the right of the converging lens, the image formed by the converging lens will act as the object for the diverging lens.
To know more about converging lens
https://brainly.com/question/29178301
#SPJ11
Which of the following statements is the best definition of temperature? O It is measured using a mercury thermometer. O It is a measure of the average kinetic energy per particle. O It is an exact measure of the total heat content of an object.
The best definition of temperature is: "It is a measure of the average kinetic energy per particle." Temperature is a physical quantity that describes the degree of hotness or coldness of an object or a system. It is a measure of the average kinetic energy of the particles that make up the object or system.
When the temperature is higher, the particles have higher average kinetic energy, and when the temperature is lower, the particles have lower average kinetic energy.
The measurement of temperature can be done using various instruments, including mercury thermometers, as mentioned in one of the statements. However, the measurement instrument itself does not define temperature; it is just a tool used to measure it.
Temperature is not an exact measure of the total heat content of an object or system, as stated in another statement. Heat content is related to the amount of energy stored in an object or system, which depends on factors such as mass and specific heat capacity, in addition to temperature.
Therefore, the statement that best defines temperature is: "It is a measure of the average kinetic energy per particle."
Learn more about kinetic energy here:
https://brainly.com/question/999862
#SPJ11
A square loop (length along one side =12 cm ) rotates in a constant magnetic field which has a magnitude of 3.1 T. At an instant when the angle between the field and the normal to the plane of the loop is equal to 25 ∘
and increasing at the rate of 10 ∘
/s, what is the magnitude of the induced emf in the loop? Write your answer in milli-volts. Question 3 1 pts A 15-cm length of wire is held along an east-west direction and moved horizontally to the north with a speed of 3.2 m/s in a region where the magnetic field of the earth is 67 micro-T directed 42 ∘
below the horizontal. What is the magnitude of the potential difference between the ends of the wire? Write your answer in micro-volts.
Question 1:
Given, Length along one side, L = 12cmMagnetic field magnitude, B = 3.1TAt an instant when, the angle between the field and the normal to the plane of the loop, θ = 25°
And, the angle is increasing at the rate of, dθ/dt = 10°/sInduced emf in the loop is given by,ε = NBAω sinθ, where, N = a number of turns in the loop.
A = area of the loop ω = angular velocity of the loop
dθ/dt = rate of change of angle= 10°/s = 10π/180 rad/s
Putting the values,ε = NBAω sinθε = N(L)²B(ω)sinθε = (1²)(12 × 10⁻²)²(3.1)(10π/180)sin25°ε = 2.36 × 10⁻⁴ sin25°V
Now, converting into milli-voltsε = 2.36 × 10⁻¹ µV
So, the magnitude of the induced emf in the loop is 0.236 mV.
Question 2:
Given, Length of the wire, L = 15 cm = 0.15 mSpeed of wire, v = 3.2 m/s Magnetic field of earth, B = 67 µT = 67 × 10⁻⁶ T
The angle between the magnetic field and the horizontal, θ = 42°Now, induced emf is given by,ε = BLv sinθ Where B = Magnetic field, L = Length of wire, v = Speed of wire, θ = Angle between the magnetic field and velocity of the wire.
Putting the values,ε = (67 × 10⁻⁶)(0.15)(3.2)sin42°ε = 9.72 × 10⁻⁸ sin42°V
Now, converting into micro-volts ε = 97.2 × 10⁻³ µV
So, the magnitude of the potential difference between the ends of the wire is 97.2 µV.
To learn about magnitude here:
https://brainly.com/question/30337362
#SPJ11
20 kVA, 2000/200-V, 50-Hz transformer has a high voltage winding resistance of 0.2 2 and a leakage reactance of 0.242. The low voltage winding resistance is 0.05 2 and the leakage reactance is 0.02 2. Find the equivalent winding resistance, reactance and impedance referred to the (i) high voltage side and (ii) the low-voltage side. (Draw the related equivalent circuits)
Therefore, the equivalent winding resistance is 0.27 Ω, the equivalent reactance is 0.262 Ω, and the equivalent impedance is 0.376 Ω.
To find the equivalent winding resistance, reactance, and impedance of the transformer, we can use the following formulas:
Equivalent Winding Resistance[tex](R_{eq})[/tex] = High Voltage Winding Resistance + Low Voltage Winding Resistance
Equivalent Reactance[tex](X_{eq})[/tex] = High Voltage Leakage Reactance + Low Voltage Leakage Reactance
Equivalent Impedance[tex](Z_{eq})[/tex] = [tex]\sqrt(R_{eq^2} + X_{eq^2})[/tex]
Given:
High Voltage Winding Resistance [tex](R_h)[/tex] = 0.22 Ω
High Voltage Leakage Reactance[tex](X_h)[/tex] = 0.242 Ω
Low Voltage Winding Resistance[tex](R_l)[/tex] = 0.05 Ω
Low Voltage Leakage Reactance[tex](X_l)[/tex] = 0.02 Ω
Calculating the values:
Equivalent Winding Resistance [tex](R_{eq})[/tex] = 0.22 Ω + 0.05 Ω = 0.27 Ω
Equivalent Reactance[tex](X_{eq})[/tex]= 0.242 Ω + 0.02 Ω = 0.262 Ω
Equivalent Impedance [tex](Z_{eq})[/tex] = √[tex](0.27^2 + 0.262^2)[/tex] =[tex]\sqrt{(0.0729 + 0.068644)[/tex]= [tex]\sqrt{0.141544[/tex] = 0.376 Ω
To know more about equivalent winding resistance, here
brainly.com/question/18322298
#SPJ4
--The complete QUestion is, What is the equivalent winding resistance, reactance, and impedance of a 20 kVA, 2000/200-V, 50-Hz transformer with a high voltage winding resistance of 0.22 Ω and a leakage reactance of 0.242 Ω, and a low voltage winding resistance of 0.05 Ω and a leakage reactance of 0.02 Ω?
--
A fridge operates at the thermodynamically maximum possible coefficient of performance, K =
10.0. The temperature inside the fridge is 3.0 °C. What is the temperature in the surrounding
environment?
The maximum possible coefficient of performance of the fridge can be expressed in terms of temperatures as:K = T1 / (T2 - T1)Simplifying the equation, we get:T2 = (T1 / K) + T1T2 = (1 + 1/K) * T1 Substituting the given values, we get:T2 = (1 + 1/10) * 3.0°C= 3.3°C Therefore, the temperature in the surrounding environment is 3.3°C.
The coefficient of performance (COP) of a fridge is given by the formula:COP = QL / W The COP of the fridge is given as K = 10The temperature inside the fridge is given as T1 = 3.0°C The temperature in the surrounding environment is given as T2.To find the temperature in the surrounding environment, we need to find the heat that flows from the fridge to the surrounding environment per unit time.We know that,QL = (1/K) * W Thus,Q = (1/K) * W ...(1)We also know that Q = mcΔ T where m is the mass of the substance (in this case the fridge), c is the specific heat capacity of the substance, and ΔT is the change in temperature. Since the fridge is assumed to be running continuously, ΔT = T2 - T1.Using equation (1), we get:(1/K) * W = mcΔT(1/K) * W = mc(T2 - T1)Simplifying the equation, we get:T2 = (W/Kmc) + T1 Since the fridge operates at the thermodynamically maximum possible coefficient of performance, it is assumed to be a Carnot engine. Thus, the maximum possible coefficient of performance of the fridge can be expressed in terms of temperatures as:K = T1 / (T2 - T1)Simplifying the equation, we get:T2 = (T1 / K) + T1 T2 = (1 + 1/K) * T1 Substituting the given values, we get:T2 = (1 + 1/10) * 3.0°C= 3.3°C Therefore, the temperature in the surrounding environment is 3.3°C.
Learn more about Temperature here,
https://brainly.com/question/27944554
#SPJ11
An atom has 80 electrons, 126 neutrons, and 82 protons. What is the name of this atom? Is it electrically
charged? Write out the nuclear notation for this nucleus.
The atom with 80 electrons, 126 neutrons, and 82 protons has a nucleus with 82 protons, which means it has 82 electrons to make it electrically neutral. It is also not electrically charged. The name of this atom is lead and its nuclear notation is as follows;`208 Pb 82
The nuclear notation for this nucleus can be written as follows:
The element symbol: Pb
The atomic number (number of protons): 82 (as a subscript)
The mass number (number of protons + neutrons): 126 + 82 = 208 (as a superscript)
Therefore, the nuclear notation for this nucleus is ^208Pb.
`Where `208` is the mass number, `Pb` stands for lead and `82` is the atomic number of lead (Pb). The atomic number represents the number of protons in the nucleus of an atom.
Learn more about atoms:
https://brainly.com/question/17545314
#SPJ11
A volleyball with a man of 0.200 kg approaches a player horizontally with a speed of 10.0 m/s. The player strikes the ball with her hand, which comes the ball to move in the opposite direction with a speed of 1.3 m/s ( What magnitude of impulsa (in kg min delivered to the ball by the buyer m/s (b) What is the direction of the impulse delivered to the ball by the player In the same direction as the ball's initial velocity Perpendicular to the ball's initial velocity Opposite to the ball's initial velocity The magnitude is zero. (c) If the player's hand is in contact with the ball for 0.0600 , what is the magnitude of the average force (In N) exerted on the player's hand by the ball? N
(a) the magnitude of the impulse delivered to the ball by the player is 1.34 kg m/s
(b) the answer is opposite to the ball's initial velocity.
(c) the magnitude of the average force exerted on the player's hand by the ball is 558.6 N. The direction of the force is opposite to the ball's initial velocity. Hence, the answer is opposite to the ball's initial velocity.
Given data:
Mass of man = m = 0.200 kg
Initial velocity of ball = u = 10.0 m/s
Final velocity of ball = v = 1.3 m/s
Time taken to strike the ball = t = 0.0600 s
(a) Impulse is defined as the product of force and time. The impulse momentum theorem states that the change in momentum of a body is equal to the impulse applied to it.
The initial momentum of the ball is m × u
Final momentum of the ball is m × v
Change in momentum of the ball = Final momentum - Initial momentum
= m × v - m × u
= m(v - u)
Now, Impulse = Change in momentum
= m(v - u)
= 0.200(1.3 - 10.0)
≈ -1.340 kg m/s
(b) As the final velocity of the ball is in opposite direction to the initial velocity, the direction of the impulse delivered to the ball by the player is in the opposite direction to the ball's initial velocity.
(c) Force is defined as the rate of change of momentum. Force = change in momentum / time
F = (mv - mu) / t
F = m(v - u) / t
F = 0.200 (1.3 - 10.0) / 0.0600
F ≈ -558.6 N
To learn more about magnitude, refer:-
https://brainly.com/question/31022175
#SPJ11
Determine the direction of the magnetic force in the following situations: (a) A negatively charged particle is moving north in a magnetic field which points up. (b) A positively charged particle is moving in the +x direction in a magnetic field that points in the −y direction. (c) A positively charged particle is stationary in a magnetic field that points in the +z direction. (d) A negatively charged particle is moving west in a magnetic field that points east. (e) A negatively charged particle is moving in the −z direction in a magnetic field that points in the −x direction. (f) A negatively charged particle is moving up in a magnetic field that points south.
The direction of the magnetic force can be determined using the right-hand rule for magnetic force.
According to this rule, if the thumb of the right hand points in the direction of the velocity of the charged particle, and the fingers point in the direction of the magnetic field, then the palm of the hand will indicate the direction of the magnetic force on the particle.
(a) For a negatively charged particle moving north in a magnetic field pointing up, the force would act to the west.(b) For a positively charged particle moving in the +x direction in a magnetic field pointing in the −y direction, the force would act in the +z direction.
(c) For a positively charged particle that is stationary in a magnetic field pointing in the +z direction, there would be no magnetic force since the particle is not in motion.(d) For a negatively charged particle moving west in a magnetic field pointing east, the force would act in the south direction.
(e) For a negatively charged particle moving in the −z direction in a magnetic field pointing in the −x direction, the force would act in the +y direction.(f) For a negatively charged particle moving up in a magnetic field pointing south, the force would act in the west direction.
Learn more about magnetic force here:
https://brainly.com/question/30532541
#SPJ11
49)Indicate the correct statement a. Plastic deformation takes place above the melting temperature b. Plastic deformation means permanent deformation c. Plastic strain is due to elastic deformations d. Elastic deformations do not follow Hooke's law e. NoA 50)Regarding thermoplastics (TP) and thermosets (TS), Indicate the incorrect. a. TP yield less cross linking than TS do b. TP are ductile, TS are hard and brittle c. TP soften when heating, TS do not d. TS vulcanizes better than TP e. NoA
49) option b. Plastic deformation means permanent deformation is the correct statement.50) option d. TS vulcanizes better than TP is the incorrect statement.
49)The correct statement is that plastic deformation means permanent deformation.
The given statement is true as plastic deformation is a non-reversible deformation that occurs when a material is subjected to external forces that exceeds its yield strength. This deformation remains permanent and does not return to its original shape. Therefore, option b. Plastic deformation means permanent deformation is the correct statement.
50)The incorrect statement is that TS vulcanizes better than TP. The given statement is not true as vulcanization is a process in which rubber is heated with sulfur or similar substances to improve its elasticity and strength.
This process is used to increase the cross-linking between the polymers. Thermosets are already heavily cross-linked due to which they do not need to be vulcanized. Therefore, option d. TS vulcanizes better than TP is the incorrect statement.
Learn more about external forces here,
https://brainly.com/question/25800003
#SPJ11
Mohammad slides across the ground in a straight line. How far does Mohammad
slide on the floor if he is decelerating at a constant 2.40 m/s2 and his initial velocity is
half of the velocity of the bowling ball right before it hit Mohammad in the gut?
Mohammad slides a distance of 102.3 m on the floor at a constant deceleration of 2.4 m/s².
Mohammad slides on the floor with a constant deceleration of 2.4 m/s². The initial velocity of Mohammad is half of the velocity of the bowling ball just before it hits Mohammad in the gut. If the initial velocity of the ball is v₀ and that of Mohammad is v₀/2, then according to the law of conservation of momentum, we have:mv₀ = (m/2)v₀/2 + mvfWhere, m is the mass of the bowling ball, v₀ is the initial velocity of the ball, and vf is the final velocity of the system, which is zero after the collision.
Now, we can find the initial velocity of Mohammad using the equation:m v₀ = (m/2)(v₀/2) + mvf(m v₀) - (m v₀/4) = mvf(3m/4)v₀ = mvfWe can substitute this expression for v₀ in the equation of motion for Mohammad:x = v₀t + (1/2)at²where, x is the distance travelled by Mohammad, t is the time, and a is the acceleration. Rearranging this equation, we get:t = sqrt(2x/a)Substituting the value of v₀ in this equation, we have:t = sqrt(2x/(3a))Putting the expression for v₀ in the equation of momentum, we have:3mvf/4 = m(vf + v)/2where v is the final velocity of Mohammad.
Solving for vf, we get:vf = -v/2Substituting this expression in the equation of motion for Mohammad, we have:x = (v₀/2)t + (1/2)at²Putting the expression for t in this equation, we get:x = (v₀/2)sqrt(2x/(3a)) + (1/2)at²Simplifying this expression, we get: (3/4)x = (1/2)(v₀/√(3a))t²Substituting the expression for t in this equation, we get:(3/4)x = (1/2)(v₀/√(3a)) [2x/3a]x = (v₀²/3a) [2/√(3a)]x = (v₀²/√(3a²))(4/3)Using the expression for v₀ in this equation, we get:x = [v²/(3a²)](4/3)(1/√3)x = (4/9)(v²/a)√3Putting the values, we get:x = (4/9)(20²/2.4)√3 = 102.3 m.
Hence, Mohammad slides a distance of 102.3 m on the floor at a constant deceleration of 2.4 m/s².
Learn more about velocity here,
https://brainly.com/question/80295
#SPJ11
Describe the image properties when the converging mirror (Concave) has an object closer to it than its focal length?
When an object is positioned closer to a concave (converging) mirror than its focal length, the image formed will have the following properties: 1. Virtual Image, 2. Enlarged Image, 3. Upright Orientation, 4. Reduced Distance, 5. Realism.
1. Virtual Image: The image formed will be virtual, meaning it cannot be projected onto a screen. It can only be seen when looking into the mirror.
2. Enlarged Image: The image will be magnified compared to the size of the object. The height of the image will be greater than the height of the object.
3. Upright Orientation: The image will be upright, meaning it will have the same orientation as the object. This occurs because the light rays from the object diverge and then appear to converge from behind the mirror, forming the virtual image.
4. Reduced Distance: The image will appear closer to the mirror than the object itself. The distance between the mirror and the image will be smaller than the distance between the mirror and the object.
5. Realism: Although the image is virtual, it appears as if it is a real object located behind the mirror. This is due to the apparent path of the light rays.
Overall, when an object is placed closer to a concave mirror than its focal length, a magnified, upright, virtual image is formed that appears closer to the mirror than the object itself.
Learn more about focal length
https://brainly.com/question/31755962
#SPJ11
The resistivity of a silver wire with a radius of 2.6 mm is 1.59 × 10⁻⁸ m. If the length of the wire is 7 m, what is the resistance of the wire? Give your answer to 4 decimal places in scientific notation.
The resistance of the silver wire with a radius of 2.6 mm is 5.2395 x 10^-3 Ω.
The radius of the wire (r) = 2.6 mm = 2.6 x 10^-3m
Resistivity of silver wire (ρ) = 1.59 x 10^-8 m
Length of the wire (l) = 7 m
Resistance of a wire (R) = ρ l / A, Where
ρ = Resistivity of the wire
l = Length of the wire
A = Area of cross-section of the wire
A = π r^2 = π (2.6 x 10^-3 m)^2= π (6.76 x 10^-6 m^2) = 2.1257 x 10^-5 m^2
Let's substitute the given values in the above formula and calculate the resistance of the wire.
Resistance of the wire (R) = (1.59 x 10^-8 m x 7 m) / (2.1257 x 10^-5 m^2) = 5.2395 x 10^-3 Ω
Hence, the resistance of the silver wire with a radius of 2.6 mm is 5.2395 x 10^-3 Ω.
Learn more about Resistance https://brainly.com/question/17563681
#SPJ11
An undamped 2.85 kg horizontal spring oscillator has a spring constant of 30.7 N/m. While oscillating, it is found to have a speed of 3.95 m/s as it passes through its equilibrium position
. What is its amplitude of oscillation?
What is the oscillator's total mechanical energy tot as it passes through a position that is 0.556 of the amplitude away from the equilibrium position?
a) Amplitude of oscillation = 1.2226 m
b) Total mechanical energy of the oscillator as it passes through the position 0.556 of the amplitude away from the equilibrium position is 9.863 J.
The amplitude of oscillation is given by;
A = x = Vm/ω, where;
Vm = maximum velocity of oscillation
ω = angular frequency of oscillation
Given that the spring oscillator has a speed of 3.95 m/s while oscillating. The angular frequency is given by;
ω = sqrt(k/m)
where;
m = mass of spring oscillator
k = spring constant
ω = sqrt(30.7/2.85) = 3.2276 rad/s
Now we can calculate the amplitude;
A = x = Vm/ω= 3.95/3.2276= 1.2226 m
Now, the total mechanical energy at a position that is 0.556 of the amplitude away from the equilibrium position is given by;
E = KE + PE
Since the spring oscillator has no damping;
E = KE + PE
= 1/2 mv² + 1/2 kx²
Substituting the given values;
E = 1/2 * 2.85 * 3.95² + 1/2 * 30.7 * (0.556 * 1.2226)²
E = 9.863 J
To learn more about amplitude, refer:-
https://brainly.com/question/9525052
#SPJ11
A fringe pattern is formed on an observation screen in a double slit experiment by light of a single wavelength. What is the path length difference between the light travelling from each slit, for the dark fringe right next to the bright central maximum? a. 1/4 wavelength b. 1/2 wavelength c. 1 wavelength d. 1 1/2 wavelengths e. 2 wavelengths
The path length difference between the light traveling from each slit for the dark fringe right next to the bright central maximum is half a wavelength (λ/2) option (b).
When light waves from the two slits arrive at the screen in phase (that is, their peaks and troughs coincide), a bright fringe is formed. When the waves from the two slits arrive at the screen out of phase (that is, a peak of one wave coincides with a trough of the other), they cancel each other out and a dark fringe is formed. In other words, the dark fringes are the result of destructive interference between the two waves. At a dark fringe, the path difference between the two waves is an odd multiple of half a wavelength (λ/2).
Therefore, the path length difference between the light traveling from each slit for the dark fringe right next to the bright central maximum is half a wavelength (λ/2). Hence, the correct option is b.
Learn more about path length difference https://brainly.com/question/12645865
#SPJ11
Drag each label to the correct location on the table. Sort the sentences based on whether they describe radio waves, visible light waves, or both. They have colors. They can travel in a vacuum. They have energy. They’re used to learn about dust and gas clouds. They’re used to find the temperature of stars. They’re invisible.
Based on the given sentences, let's sort them into the correct categories: radio waves, visible light waves, or both.
Radio waves:
- They're used to learn about dust and gas clouds.
Visible light waves:
- They have colors.
- They're used to find the temperature of stars.
Both radio waves and visible light waves:
- They can travel in a vacuum.
- They have energy.
- They're invisible.
Sorted table:
| Radio Waves | Visible Light Waves | Both |
|----------------------|----------------------|----------------------|
| They're used to learn about dust and gas clouds. | They have colors. | They can travel in a vacuum. |
| - | They're used to find the temperature of stars. | They have energy. |
| - | - | They're invisible. |
Learn more in light waves
brainly.com/question/3091095
#SPJ11
loop coincides with the wire. Calculate the magnitude of the force exerted on the loop
A loop coincides with the wire.
To calculate the magnitude of the force exerted on the loop, we can use the formula:
F = BILsinθ, where F is the magnitude of the force exerted on the loop, B is the magnetic field strength, I is the current flowing through the wire, L is the length of the loop, and θ is the angle between the magnetic field and the plane of the loop.
Since the loop coincides with the wire, the angle θ between the magnetic field and the plane of the loop is 0 degrees. Therefore, sinθ = sin0 = 0. So the formula simplifies to:
F = BIL x 0 = 0
The force exerted on the loop is zero.
To learn about magnitude here:
https://brainly.com/question/30337362
#SPJ11
Making a shell momentum balance on the fluid over cylindrical shell to derivate the following Hagen-Poiseuille equation for laminar flow of a liquid in circular pipe: ΠΔΡ. R* 8 μL What are the limitations in using the Hagen-Poiseuille equation?
The Hagen-Poiseuille equation, derived from a shell momentum balance, is widely used to describe laminar flow in circular pipes. However, it has certain limitations that need to be considered.
The Hagen-Poiseuille equation is based on a number of assumptions and simplifications, which impose limitations on its applicability. Here are some key limitations:
1. Valid for laminar flow: The equation assumes that the flow is in a laminar regime, where the fluid moves in smooth, parallel layers. It is not accurate for turbulent flow conditions.
2. Incompressible and Newtonian fluid: The equation assumes that the fluid is incompressible and exhibits Newtonian behavior, meaning its viscosity remains constant regardless of the shear rate. It may not be suitable for non-Newtonian fluids or situations where fluid compressibility is significant.
3. Steady and fully developed flow: The equation assumes steady-state flow with fully developed velocity profiles. It may not be accurate for transient or non-uniform flow conditions.
4. Idealized pipe geometry: The equation assumes a perfectly circular pipe with a uniform cross-section and smooth walls. Real-world pipe systems with irregularities bends, or variations in diameter may deviate from the equation's assumptions.
5. Neglects entrance and exit effects: The equation does not consider the effects of fluid entry or exit from the pipe, which can influence the flow behavior near the pipe ends.
It is important to consider these limitations when applying the Hagen-Poiseuille equation and to evaluate its suitability for specific flow situations.
To know more about Hagen-Poiseuille click here:
https://brainly.com/question/28335121
#SPJ11
A proton moving in the plane of the page has a kinetic energy of 6.09MeV. It enters a magnetic field of magnitude B=1.16T linear boundary of the field, as shown in the figure below. Calculate the distance x from the point of entry to where the proto Tries 2/10 Previous Tries Determine the angle between the boundary and the proton's velocity vector as it leaves the field. 4.50×10 1
deg Previous Tries
The distance x from the point of entry to where the proton exits the magnetic field is 0.0544 m and the angle between the boundary and the proton's velocity vector as it leaves the field is 41.9° is the answer.
Given that the proton has a kinetic energy of 6.09 MeV. It enters a magnetic field of magnitude B = 1.16 T linear boundary of the field. We have to determine the distance x from the point of entry to where the proton exits the magnetic field. Let v be the velocity of the proton when it enters the magnetic field and r be the radius of curvature of the proton in the field.
Then magnetic force on the proton is given asq (v × B) = mv²/r
Where q and m are the charge and mass of the proton, respectively.
From the above equation, we have v = pr/B ……….(1)
where p = mv/q is the momentum of the proton and it remains constant.
Therefore, when the proton leaves the magnetic field, we have v = pr/B
Using the conservation of energy, we have½ mv² = qvBx
Hence, x = mv²/2qB² ………..(2)Putting the given values, we get x = 0.0544 m.
The angle between the boundary and the proton's velocity vector, as it leaves the field, is given as follows: tanθ = mv/(qBr)θ = tan⁻¹(v/(qBr))
The velocity of the proton is given by equation (1) asv = pr/B
The radius of curvature of the proton is given byr = mv/qB
The angle θ between the boundary and the proton's velocity vector as it leaves the field istan θ = p/q
The angle θ = tan⁻¹ (p/q)
Putting the given values, we getθ = 41.9°
Thus, the distance x from the point of entry to where the proton exits the magnetic field is 0.0544 m and the angle between the boundary and the proton's velocity vector as it leaves the field is 41.9°.
know more about magnetic field
https://brainly.com/question/14848188
#SPJ11
Magnetic field of a solenoid (multiple Choice) Which device exhibits the same magnetic field as a solenoid. a. Device "A": b. Device "B" : c. Device "C": d. Device "D": e. Only a black hole can create a solenoid field, so is not possible to answer the question. f. Not possible to answer, the prof made it up specifically to fool gullible students that did not study. b. Device "B"' : c. Device " C " : d. Device "D" : e. Only a black hole can create a solenoid field, so is not possible to answer the question. f. Not possible to answer, the prof made it up specifically to fool gullible students that did not study.
Device "B" and Device "D" exhibit the same magnetic field as a solenoid.
A solenoid is a cylindrical coil of wire that produces a magnetic field when an electric current flows through it. The magnetic field of a solenoid resembles that of a bar magnet, with the magnetic field lines running parallel to the axis of the coil.
Among the given options, Device "B" and Device "D" exhibit the same magnetic field as a solenoid.
Device "B" refers to a long, straight wire carrying a current. According to Ampere's Law, a long straight wire carrying current produces a magnetic field that forms concentric circles around the wire.
Device "D" refers to a toroid, which is a donut-shaped coil of wire. A toroid also produces a magnetic field similar to a solenoid, with the magnetic field lines running parallel to the axis of the toroid.
Both Device "B" (long straight wire) and Device "D" (toroid) exhibit magnetic fields that resemble the magnetic field of a solenoid. Therefore, they are the correct choices that exhibit the same magnetic field as a solenoid.
Learn About Ampere's Law Here:
https://brainly.com/question/4013961
#SPJ11
What is the pressure inside a 32.0 L container holding 104.1 kg of argon gas at 20.3°C?
The pressure inside the 32.0 L container holding 104.1 kg of argon gas at 20.3°C is approximately 67279.93 Pa.
To calculate the pressure inside a container of gas, we can use the ideal gas law equation:
PV = nRT
Where:
P is the pressure of the gas
V is the volume of the container
n is the number of moles of gas
R is the ideal gas constant (8.314 J/(mol·K))
T is the temperature in Kelvin
First, let's convert the given temperature from Celsius to Kelvin:
T = 20.3°C + 273.15 = 293.45 K
Next, we need to determine the number of moles of argon gas using the molar mass of argon (Ar), which is approximately 39.95 g/mol.
n = mass / molar mass
n = 104.1 kg / (39.95 g/mol * 0.001 kg/g)
n = 2604.006 moles
Now, we can substitute the values into the ideal gas law equation to solve for the pressure:
P * 32.0 L = (2604.006 mol) * (8.314 J/(mol·K)) * 293.45 K
P = (2604.006 * 8.314 * 293.45) / 32.0
P ≈ 67279.93 Pa
To know more about ideal gas law
https://brainly.com/question/30458409
#SPJ11
Why is it so hard to test collapse theories?
Testing collapse theories, which propose modifications to the standard quantum mechanics to explain the collapse of the wave function, can be challenging due to several reasons:
Experimental Limitations: Collapse theories often make predictions that are very subtle and difficult to observe directly. They may involve phenomena occurring at extremely small scales or with very short timeframes, which are technically challenging to measure and observe in a laboratory setting.
Decoherence and Environment: Collapse theories often propose interactions with the environment or other particles as the cause of wave function collapse. However, the interactions between a quantum system and its environment can lead to decoherence, which makes it difficult to isolate and observe the collapse dynamics.
Interpretational Differences: There are various collapse theories, each with its own set of assumptions and predictions. These theories may have different interpretations of the measurement process and the nature of collapse, making it challenging to design experiments that can distinguish between them and other interpretations of quantum mechanics.
Lack of Consensus: Collapse theories are still a subject of active research and debate in the scientific community. There is no widely accepted collapse theory that has garnered strong experimental support. The lack of consensus makes it challenging to design experiments that can definitively test and validate or rule out specific collapse models.
Philosophical and Conceptual Challenges: The nature of collapse and the measurement process in quantum mechanics pose deep philosophical and conceptual challenges. It is difficult to devise experiments that can directly probe and address these foundational questions.
Due to these complexities and challenges, testing collapse theories remains a topic of ongoing research and investigation in the field of quantum foundations.
To know more about Philosophical and Conceptual Challenges
brainly.com/question/28329967
#SPJ11
A particle (mass =6.0mg ) moves with a speed of 4.0 km/s in a direction that makes an angle of 37ᵒ above the positive x-axis in the xy plane. At the instant it enters a magnetic field of 5.0mT [pointing in the positive x-axis] it experiences an acceleration of 8.0 m/s² going out of the xy-plane. Show that the charge of the particle is −4.0μC. [Please show a diagram for the direction!]
the charge of the particle is -4.0 μC.
Firstly, let us define the known values and list them down given below:
mass, m = 6.0 mg = 6.0 x 10^-6 kg
Speed, v = 4.0 km/s = 4.0 x 10^3 m/s
Angle, θ = 37°
Magnetic field, B = 5.0 mT = 5.0 x 10^-3 T
Acceleration, a = 8.0 m/s²
Now, we have to find the charge, q.
Let F be the magnetic force acting on the particle,
F=q(v×B) and from Newton's second law, F=ma.
Therefore,
q(v×B)=ma.......(i)
Substituting values in the above equation, we get
q[(4.0 x 10^3 m/s) × (5.0 x 10^-3 T) × sin 37°]= 6.0 x 10^-6 kg × 8.0 m/s²
We get
q = -4.0 μC
where -ve sign indicates that the charge on the particle is negative. Therefore, the charge of the particle is -4.0 μC.4
Learn more about speed:
https://brainly.com/question/13943409
#SPJ11
An object is placed 23.3 cm to the left of a diverging lens (f = -8.39 cm). A concave mirror (f = 10.2 cm) is placed 23.9 cm to the right of the lens. find the final image distance, measured relative to the mirror.
An object is placed 23.3 cm to the left of a diverging lens (f = -8.39 cm). the final image distance, measured relative to the mirror, is approximately 13.158 cm.
To find the final image distance relative to the mirror, we need to consider the combined effect of the diverging lens and the concave mirror.
Given:
Object distance from the lens, p1 = -23.3 cm (negative sign indicates it is to the left of the lens)
Focal length of the diverging lens, f1 = -8.39 cm (negative sign indicates a diverging lens)
Distance between the lens and the mirror, d = 23.9 cm
Focal length of the concave mirror, f2 = 10.2 cm
We can use the mirror and lens equation to calculate the intermediate image distance relative to the lens, q1:
1/f2 = 1/q1 - 1/d
Substituting the values:
1/10.2 = 1/q1 - 1/23.9
Simplifying the equation:
1/q1 = 1/10.2 + 1/23.9
Now, we need to find the final image distance relative to the mirror, q2. Since the image formed by the lens acts as the object for the mirror, the object distance for the mirror is q1.
Using the mirror equation:
1/f1 = 1/q2 - 1/q1
Substituting the values:
1/-8.39 = 1/q2 - 1/q1
Substituting the value of q1:
1/-8.39 = 1/q2 - 1/(1/10.2 + 1/23.9)
Simplifying the equation:
1/q2 = 1/-8.39 + 1/(1/10.2 + 1/23.9)
Calculating the reciprocal of the right-hand side:
1/q2 = 1/-8.39 + 1/(1/10.2 + 1/23.9)
Simplifying the equation:
1/q2 ≈ 0.119 - 0.043
1/q2 ≈ 0.076
Taking the reciprocal of both sides:
q2 ≈ 13.158 cm
Therefore, the final image distance, measured relative to the mirror, is approximately 13.158 cm.
Learn more about diverging lens here:
https://brainly.com/question/28348284
#SPJ11
Flying Circus of Physics In basketball, hang is an illusion in which a player seems to weaken the gravitational acceleration while in midair. The illusion depends much on a skilled player's ability to rapidly shift the ball between hands during the flight, but it might also be supported by the longer horizontal distance the player travels in the upper part of the jump than in the lower part. If a player jumps with an initial speed of No-7.50 m/s at an angle of 80-37.0, what percent of the jump's range does the player spend in the upper half of the jump (between maximum height and half-maximum height)?
The player spends approximately 79% of the jump's range in the upper half (between maximum height and half-maximum height) of the jump.
To determine the percentage of the jump's range spent in the upper half, we need to analyze the motion of the player. We can break down the motion into horizontal and vertical components. The initial speed of the jump is given as 7.50 m/s, and the angle is 37.0 degrees.
First, we calculate the time taken to reach the maximum height of the jump. The time to reach maximum height can be determined using the vertical component of the initial velocity and the acceleration due to gravity. The vertical component is given by No * sin(θ), where No is the initial speed and θ is the angle. The time to reach maximum height is then t = (No * sin(θ)) / g, where g is the acceleration due to gravity.
Next, we calculate the time taken to reach half-maximum height. Since the vertical motion is symmetrical, the time taken to reach half-maximum height is half of the time taken to reach maximum height, which is t/2.
Now, we can calculate the horizontal distance traveled in the upper half of the jump. The horizontal distance can be determined using the horizontal component of the initial velocity and the time taken to reach half-maximum height. The horizontal component is given by No * cos(θ), and the distance is then d = (No * cos(θ)) * (t/2).
Finally, we calculate the total horizontal distance of the jump by using the total time of flight, which is twice the time taken to reach maximum height. The total horizontal distance is given by d_total = (No * cos(θ)) * (2 * t).
The percentage of the jump's range spent in the upper half can be calculated as (d / d_total) * 100. Substituting the values, we find (d / d_total) * 100 ≈ 79%.
Learn more about gravity here:
https://brainly.com/question/31321801
#SPJ11
A particle with a charge of −6.6μC is moving in a uniform magnetic field of B
=− (1.65×10 2
T) k
^
with a velocity: v
=(3.62 ×10 4
m/s) i
^
+(8.6×10 4
m/s) j
^
. (a) Calculate the x component of the magnetic force (in N) on the particle? (b) Calculate the y component of the magnetic force (in N) on the particle?
The x-component of the magnetic force on the particle is -4.47 N, and the y-component of the magnetic force on the particle is 1.43 N.
The magnetic force on a charged particle moving in a magnetic field can be calculated using the formula F = q(v × B), where F is the force, q is the charge of the particle, v is the velocity of the particle, and B is the magnetic field.
(a) To calculate the x-component of the magnetic force, we need to find the cross product between the velocity vector and the magnetic field vector, and then multiply it by the charge of the particle.
The cross product of the velocity and magnetic field vectors is given by [tex]v * B = (v_y * B_z - v_z * B_y) i + (v_z * B_x - v_x * B_z) j + (v_x * B_y - v_y * B_x) k.[/tex] Substituting the given values, we have[tex]v * B = (-8.6 * 10^4 m/s * (-1.65 * 10^2 T)) i + (3.62 * 10^4 m/s * (-1.65 * 10^2 T)) j[/tex]. Multiplying this by the charge of the particle, we get [tex]F_x = -6.6 * 10^-6 C * (-8.6 * 10^4 m/s * (-1.65 * 10^2 T)) = -4.47 N.[/tex]
(b) Similarly, to calculate the y-component of the magnetic force, we use the formula [tex]F_y = q(v_z * B_x - v_x * B_z)[/tex]. Substituting the given values, we have [tex]F_y = -6.6 * 10^-6 C * (3.62 * 10^4 m/s * (-1.65 * 10^2 T)) = 1.43 N.[/tex] Therefore, the x-component of the magnetic force is -4.47 N and the y-component of the magnetic force is 1.43 N.
Learn more about magnetic field here:
https://brainly.com/question/19542022
#SPJ11
An air-track glider is attached to a spring. The glider is pulled to the right and released from rest at t=0 s. It then oscillates with a period of 1.8 s and a maximum speed of 46 cm/s. Part A What is the amplitude of the oscillation? Express your answer in centimeters. A=13 cm What is the glider's position at t=0.26 s ? Express your answer in centimeters. A 1.10 kg block is attached to a spring with spring constant 14 N/m. While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 33 cm/s. Part A What is the amplitude of the subsequent oscillations? Express your answer in centimeters. A=9.3 cm What is the block's speed at the point where x=0.75A ? Express your answer in centimeters per second.
Part A The amplitude of the oscillation is 13 cm. the glider's position at t = 0.26 s is approximately -9.8 cm.the amplitude of the subsequent oscillations is 9.3 cm. Part B the required velocity of the block at the point where x = 0.75A is v = A√(k / m) = 9.3√(14 / 1.10) = 31 cm/s
Given,Period, T = 1.8 s Maximum Speed, vmax = 46 cm/sLet Amplitude, A be the amplitude of the oscillation.Part A Amplitude of the oscillation Amplitude of the oscillation is given by;A = vmax * T / (2 * π)Substitute the given values,A = (46 cm/s) * (1.8 s) / (2 * 3.14)A = 13 cm Therefore, the amplitude of the oscillation is 13 cm. Part B Position of the glider at t = 0.26 sThe general equation for displacement of the glider with time is given by;x = A cos (ωt + φ)Where A is the amplitude, ω is the angular frequency and φ is the phase constant.At time t = 0, x = A cos φThe velocity of the glider is maximum at the mean position and zero at the extremities.
Therefore, the glider will cross the mean position when cos(ωt + φ) = 0that is,ωt + φ = 90°ωt = 90° - φ..................(1)Also given, Period T = 1.8 sSo, Angular frequency, ω = 2π / T = 2π / 1.8 rad/s Substitute the given values in (1)0.26 s = (90° - φ) / (2π / 1.8)0.26 s = (90° - φ) * 1.8 / 2πφ = 1.397 radx = A cos (ωt + φ)x = A cos [ω(0.26) + 1.397]x = A cos (0.753 + 1.397) = A cos 2.15 = -9.8 cm (Approx)Therefore, the glider's position at t = 0.26 s is approximately -9.8 cm.
A 1.10 kg block is attached to a spring with spring constant 14 N/m. Let the amplitude of the subsequent oscillations be A. Let vmax be the maximum velocity and v be the velocity of the block when x = 0.75A.Part A Amplitude of the subsequent oscillation Amplitude of the subsequent oscillation is given by,A = vmax / ωWhere ω is the angular frequencySubstitute the given values,vmax = A * ωHence,A = vmax / ω = √(k / m) * A = √(14 N/m / 1.10 kg) * A = 3.09A = 9.3 cmTherefore, the amplitude of the subsequent oscillations is 9.3 cm.
Part B Velocity of the block at x = 0.75ATotal energy of the system is given by;E = 1/2 kA²At x = 0.75A, the block has only potential energy.E = 1/2 k(0.75A)²= 0.42 kA²Total energy is also given by,E = 1/2 mv²v = √(2E / m)= √(kA² / m)= A√(k / m)At x = 0.75A, v = A√(k / m)At x = 0.75A,A = 9.3 cmK = 14 N/mM = 1.10 kgTherefore, the required velocity of the block at the point where x = 0.75A is v = A√(k / m) = 9.3√(14 / 1.10) = 31 cm/s (Approx).
Learn more about velocity here,
https://brainly.com/question/80295
#SPJ11
Find the components of the following vectors using trigonometric functions a. The wind is blowing at 77 km/h N 25° W b. A car accelerates at 4.55 m/s² at a bearing of 117" c. Sally and Sandy walk 18 m up a ramp, inclined at 33" from the horizontal. How far forward and how far upward did they go? 1
(a), the wind speed is given as 77 km/h at a direction of N 25° W. In case (b) car's acceleration is given as 4.55 m/s² at a bearing of 117°.
(c) In case Sally & Sandy walk up a ramp inclined at 33° from horizontal for a distance of 18 m. The horizontal and vertical components of each vector can be determined using trigonometric functions.
In case (a), to find the components of the wind vector, The north-south component can be found by multiplying the wind speed by sine of 25°, while east-west component can be found by multiplying the wind speed by the cosine of 25°.
In case (b), the acceleration vector can be split into its horizontal and vertical components using the sine and cosine functions. The vertical component can be found by multiplying the acceleration magnitude by the sine of 117°.
In case (c), the distance traveled up ramp can be found by multiplying and the distance traveled forwar can be found by multiplying the given distance by the cosine of 33°.
By applying appropriate trigonometric functions to each case, the horizontal and vertical components of the vectors can be determined.
Learn more about components here;
https://brainly.com/question/3214758
#SPJ11
power systems Q2
QUESTION 6 (a) Define the following terms. (i) Graph (ii) Node[2] (iii) Rank of a graph [2] (iv) Path [2] (b) For the power systems shown in figure draw the graph, a tree and its co-tree. Figure 6 [2]
The drawing of the graph, tree, and co-tree should accurately represent the given power systems and their interconnections. (a) In this question, you are required to define the following terms:(i) Graph(ii) Node(iii) Rank of a graph(iv) Path
(b) You need to draw the graph, a tree, and its co-tree for the power systems shown in Figure 6.(a) To answer part (a) of the question, you need to provide concise definitions for each of the terms:
(i) Graph: A graph is a collection of vertices or nodes connected by edges or arcs. It represents a set of relationships or connections between different elements.
(ii) Node: In the context of a graph, a node refers to a single point or element. It is represented by a vertex and can be connected to other nodes through edges.
(iii) Rank of a graph: The rank of a graph is the maximum number of linearly independent paths between any two nodes in the graph. It determines the connectivity and complexity of the graph.
(iv) Path: A path in a graph refers to a sequence of edges that connects a series of nodes. It represents a route or a connection between two nodes.
(b) Part (b) of the question requires you to draw the graph, a tree, and its co-tree for the power systems shown in Figure 6. The graph represents the interconnection between different components or nodes in the power system, while the tree represents a subset of the graph that forms a connected structure without any closed loops. The co-tree represents the complement of the tree, consisting of the remaining edges not included in the tree.
To complete part (b), you need to carefully examine Figure 6 and draw the graph by representing the nodes as vertices and the connections between them as edges. Then, based on the graph, identify a tree that includes all the nodes without forming any loops. Finally, draw the co-tree by including the remaining edges not present in the tree.
Learn more about vertex here:- brainly.com/question/32432204
#SPJ11
In February 1955, a paratrooper fell 370 m from an airplane without being able to open his chute but happened to land in snow, suffering only minor injuries. Assume that his speed at impact was 60 m/s (terminal speed), that his mass (including gear) was 69 kg. and that the magnitude of the force on him from the snow was at the survivable limit of 1.4 x 10⁵ N. What are (a) the minimum depth of snow that would have stopped him safely and (b) the magnitude of the impulse on him from the snow? (a) Number ___________ Units _____________
(b) Number ___________ Units _____________
The minimum depth of snow that would have stopped the paratrooper safely is 0.88 m, and the magnitude of the impulse on the paratrooper from the snow is 4126.18 N s. Number: 0.88 m; Units: meters. Number: 4126.18 N s; Units: Newton second.
Magnitude is a measure of the quantity of an item, and it usually refers to the size or degree of something. Impulse is a measure of the amount of force or energy exerted on an object, and it is defined as the product of force and time.
The minimum depth of snow that would have stopped him safely and the magnitude of the impulse on him from the snow can be calculated as follows:
(a)The total force acting on the paratrooper, F, is equal to the magnitude of the force from the snow, F snow, which is equal to 1.4 x 10⁵ N, so we have:
F = Fsnow = 1.4 x 10⁵ N
The velocity of the paratrooper just before he hits the snow, v, is equal to 60 m/s.
The work done on the paratrooper by the snow, W, is given by the equation:
W = Fd
where d is the distance over which the snow acts to stop the paratrooper. Since the paratrooper comes to a stop when he hits the snow, the work done by the snow must be equal to the kinetic energy of the paratrooper just before he hits the snow, which is given by:
KE = 1/2mv²
where m is the mass of the paratrooper including his gear, which is 69 kg.
Therefore, we have:
W = KE = 1/2mv²= 1/2 x 69 x 60²= 124,200 J
Substituting W and F into the equation for work, we obtain:
d = W/Fsnow= 124200 J / 1.4 x 10⁵ N= 0.88 m
(b)The impulse, J, on the paratrooper from the snow is given by:
J = F∆t
where F is the force on the paratrooper from the snow, which is 1.4 x 10^5 N, and ∆t is the time for which the snow exerts this force on the paratrooper. Since the paratrooper comes to a stop when he hits the snow, the time for which the snow exerts a force on him is equal to the time it takes for him to come to a stop.
This time can be calculated using the equation:
v = u + at
where u is the initial velocity, which is 60 m/s, v is the final velocity, which is 0 m/s, a is the acceleration, and t is the time.The acceleration of the paratrooper as he comes to a stop in the snow, a, can be calculated using the equation:
F = ma,
where m is the mass of the paratrooper, which is 69 kg.
Therefore, we have:
a = F/m = 1.4 x 10⁵ N / 69 kg= 2029.71 m/s²
Substituting u, v, and a into the equation for motion, we obtain:
t = (v - u) / a= (0 - 60) / -2029.71= 0.02947 s
Substituting F and t into the equation for impulse, we obtain:
J = F∆t= 1.4 x 10⁵ N x 0.02947 s= 4126.18 N s
Number: 0.88 m; Units: mNumber: 4126.18 N s; Units: N s
Learn more about magnitude at: https://brainly.com/question/30337362
#SPJ11