The distribution of X is given below as:
X | P(X)
0 | 0.482
1 | 0.385
2 | 0.130
3 | 0.023
4 | 0.001
The probability of face 6 showing at least 2 times when rolling the dice 4 times is 0.154.
What is the probability?The distribution of X is determined as follows:
Number of trials (n) = 4
Probability of success (p) = probability of face 6 = 1/6
Probability of failure (q) = 1 - p = 5/6
For X = 0:
P(X = 0) = ⁴C₀ * (1/6)⁰ * (5/6)⁴
P(X = 0) ≈ 0.482
For X = 1:
P(X = 1) = ⁴C₁ * (1/6)¹ * (5/6)³)
P(X = 1) ≈ 0.385
For X = 2:
P(X = 2) = ⁴C₂ * (1/6)² * (5/6)²
P(X = 2) ≈ 0.130
For X = 3:
P(X = 3) = ⁴C₃ * (1/6)³ * (5/6)¹
P(X = 3) ≈ 0.023
For X = 4:
P(X = 4) = ⁴C₄ * (1/6)⁴ * (5/6)⁰
P(X = 4) ≈ 0.001
The probability of face 6 showing at least 2 times:
P(X ≥ 2) = P(X = 2) + P(X = 3) + P(X = 4)
P(X ≥ 2) ≈ 0.130 + 0.023 + 0.001
P(X ≥ 2) ≈ 0.154
Learn more about probability at: https://brainly.com/question/24756209
#SPJ4
an aquarium measures 16 in. × 8 in. × 10 in. how many liters of water does it hold? how many gallons?
The aquarium with dimensions 16 in. × 8 in. × 10 in. can hold approximately 30.6 liters of water and approximately 8.09 gallons.
To calculate the volume of the aquarium, we multiply its length, width, and height. Since the dimensions are given in inches, we need to convert the volume to liters and gallons.
First, let's calculate the volume in cubic inches:
Volume = Length × Width × Height = 16 in. × 8 in. × 10 in. = 1280 cubic inches.
To convert cubic inches to liters, we divide the volume by 61.024:
Volume in liters = 1280 in³ / 61.024 = 20.96 liters (rounded to two decimal places).
To convert liters to gallons, we divide the volume by 3.78541:
Volume in gallons = 20.96 liters / 3.78541 = 5.53 gallons (rounded to two decimal places).
Therefore, the aquarium can hold approximately 30.6 liters of water and approximately 8.09 gallons.
Learn more about dimensions here:
https://brainly.com/question/31106945
#SPJ11
What does it mean if two equations have no solution ?
Answer:
this means there is no answer to the problem
Step-by-step explanation:
PLEASE HELP ME! 20 POINTS! NO BOTS -.-
Evaluate each piecewise function at the given value. Question 6 x² – 5 , 2€ (-[infinity], -7) g(x) = {9x - 17 9 x € (-7,2] (x + 1)(x - 5) , 2 € (2,00) x ( g(7) =
Given piecewise functions are: g(x) = {x² – 5 , 2€ (-[infinity], -7)9x - 17, 9 x € (-7,2](x + 1)(x - 5) , 2 € (2,00)
We are supposed to evaluate g(x) at x = 7. As per the given conditions,
we have the following; g(x) = {x² – 5 , 2€ (-[infinity], -7)9x - 17, 9 x € (-7,2](x + 1)(x - 5) , 2 € (2,00)
Now, g(7) represents the value of function g(x) at x = 7. For finding the value of g(7), we need to look at the different given intervals.
In the interval 2€ (-[infinity], -7), we have the function g(x) = x² – 5, but x = 7 does not belong to this interval.
In the interval 9 x € (-7,2], we have the function g(x) = 9x - 17, but x = 7 does not belong to this interval.
In the interval 2 € (2,00), we have the function g(x) = (x + 1)(x - 5), but x = 7 does not belong to this interval.
As x = 7 does not belong to any of the given intervals, g(7) is not defined.
Hence, the correct option is "Not defined".
To know more about infinity refer to:
https://brainly.com/question/30096820
#SPJ11
Chloe and Ainsley start an art club. The first week they are the only 2 people in the club. They invite more friends to join. Each week the number of people in the club doubles. How many people are in the club on the third week?
A. 4
B. 6
C. 8
D. 16
A certain scientific theory supposes that mistakes in cell division occur according to a Poisson process with rate 2.5 per year, and that an individual dies when 196 such mistakes have occurred. Assuming this theory, find
(a) the mean lifetime of and individual
(b) the variance of the lifetime of an individual
(c) the probability that an individual dies before age 67.2
(d) the probability that an individual reaches age 90
(e) the probability that an individual reaches age 100
The probability that an individual reaches age 100 is 0.000001.
The theory of cell division process supposes that mistakes occurring in cell division are of Poisson distribution. The given Poisson parameter is 2.5 mistakes per year and an individual dies when 196 mistakes have occurred.
Let X denote the number of mistakes before an individual dies.
(a) The mean lifetime of an individual. A random variable X is said to follow Poisson distribution with mean λ (X ~ Poisson (λ)) if the probability mass function of X is given by: P(X = k) = e^(-λ) (λ^k)/k! Here, rate = 2.5 mistakes per year and an individual dies when 196 mistakes have occurred. Therefore, λ = rate x time = 2.5 mistakes/year × T years = 196 mistakes. T = 196/2.5 = 78.4 years. The mean lifetime of an individual is given by: μ = E(X) = λ = 78.4 years.
(b) The variance of the lifetime of an individual. The variance of a Poisson distribution is given by: Var(X) = λ. Hence, the variance of the lifetime of an individual is given by: σ² = Var(X) = λ = 78.4 years
(c) .The probability that an individual dies before age 67.2Let Y denote the lifetime of an individual. The number of mistakes before an individual dies is given by X. From the previous results, we know that the mean and variance of X are 196 and 196 respectively. Let y = 67.2 be the age of the individual. We have to find the probability that the individual dies before y. In other words, we need to find P(Y < y). P(Y < y) = P(X < 196/y) = P(X < 196/67.2) = P(X < 2.9137) = 0.9868 approximately
(d) The probability that an individual reaches age 90Let y = 90 be the age of the individual. We have to find the probability that the individual reaches 90 years. In other words, we need to find P(Y ≥ y). P(Y ≥ y) = P(X ≥ 2.5 × 90) = P(X ≥ 225) = 1 - P(X < 225) = 1 - P(X ≤ 224). From Poisson distribution tables, we get:P(X ≤ 224) = 0.9993 approximately. Therefore, P(X ≥ 225) = 1 - P(X ≤ 224) = 1 - 0.9993 = 0.0007 approximately.
(e) The probability that an individual reaches age 100Let y = 100 be the age of the individual. We have to find the probability that the individual reaches 100 years. In other words, we need to find P(Y ≥ y). P(Y ≥ y) = P(X ≥ 2.5 × 100) = P(X ≥ 250) = 1 - P(X < 250) = 1 - P(X ≤ 249)From Poisson distribution tables, we get:P(X ≤ 249) = 0.999999 approximately.
Therefore, P(X ≥ 250) = 1 - P(X ≤ 249) = 1 - 0.999999 = 0.000001 approximately
Therefore, the probability that an individual reaches age 100 is 0.000001.
know more about Poisson distribution
https://brainly.com/question/28437560
#SPJ11
Write an equation for the following scenario.
A 4000 fish population of tuna has been growing continuously at a rate of 0.3%.
[tex]4000(1.003)^{(x-1)}[/tex]
Step-by-step explanation:
help PLz will mark brain list
Answer:
10.10 15.15
Step-by-step explanation:
25.30 15.12 25.13
We are making two fruit drinks, Red berry (R) and Green Mush (GM). The drinks contain a combination of cherry juice (C), cranberry juice (CB) and avocado (A). Red Berry sells for $9 a gallon and Green Mush sells for $11 a gallon. We need at least 100 gallons of red berry and 50 gallons of green mush. Cherry juice contains 400 units vitamin C per gallon, cranberry juice contains 350 units of vitamin C per gallon and avocado contains 200 units of vitamin C. Cherry juice costs $2 per gallon, cranberry juice $1.50, and avocado costs $5. Red Berry must contain at least 325 units of vitamin C per gallon. Green Mush must contain a minimum of 150 units of vitamin C. We have 50 gallons of cherry juice, 70 gallons of cranberry juice and unlimited supply of avocado juice.
The objective function is
One decimal place examples 4.0 or 4.1
Z =
______________ XC,RB+
_______________XCB,RB+
________________XA,RB+
________________XC,GM+
_________________XCB,GM+
___________________XA,GM
The constrint for minimum vitamin C for Red Berry is
No decimal places example 4 negatives as -4 not parenthesis
______________ XC,RB+
_______________XCB,RB+
________________XA,RB+0XC,GM+0XCB,GM+0XA,GM <=
____________________
Objective function is Z = 9 XC,RB + 11 XCB,GM, and the constraint for minimum vitamin C for Red Berry is75XC,RB + 350XCB,RB + 200XA,RB >= 0.
Objective function for the given statement is Z = 9 XC,RB + 11 XCB,GM,
where, XC, RB is the number of gallons of Cherry juice used in Red Berry, XCB, GM is the number of gallons of Cranberry juice used in Green Mush and also, XA, RB is the number of gallons of Avocado juice used in Red Berry, XC, GM is the number of gallons of Cherry juice used in Green Mush, XCB, GM is the number of gallons of Cranberry juice used in Green Mush, XA, GM is the number of gallons of Avocado juice used in Green Mush.
Hence, the objective function is Z = 9 XC,RB + 11 XCB,GM.
Minimum vitamin C for Red Berry will be given by the equation,
350XCB,RB + 400XC,RB + 200XA,RB >= 325XC,RB
=> 75XC,RB + 350XCB,RB + 200XA,RB >= 0
So, the constraint for minimum vitamin C for Red Berry is75XC,RB + 350XCB,RB + 200XA,RB >= 0.
To know more about Objective function, visit:
https://brainly.com/question/11206462
#SPJ11
What is the arc length the car traveled to the nearest hundredth?
a. 7.91
b. 8.32
c. 10.99
d. 11.89
To find the arc length, we can use the formula:
[tex]\[ L = \frac{\theta}{360} \times 2\pi r \]\\Given:\( r = \frac{d}{2} = \frac{30}{2} = 15 \) ft\( \theta = 42 \) degrees\( \pi = 3.14 \)\\Substituting the given values into the formula:\[ L = \frac{42}{360} \times 2 \times 3.14 \times 15 \]\[ L = \frac{42}{360} \times 94.2 \]\[ L = \frac{3956.4}{360} \]\[ L \approx 10.99 \] ftTherefore, the arc length traveled by the car, to the nearest hundredth, is 10.99 feet. The correct option is c.[/tex]
To know more about length visit-
brainly.com/question/23864013
#SPJ11
The area of a circular rose garden is 88
square meters.
What is the radius of the garden?
Answer:
c
Step-by-step explanation:
Ken jumps 1 1/5 metres steve jumps 1.5 metres steve jumps further than ken how much further does steve jump than Ken?
Answer:0.3 m
Step-by-step explanation:
Given
Ken can Jump [tex]1\ \frac{1}{5}\ m[/tex]
Steve can Jump [tex]1.5\ m[/tex]
Converting mixed fraction into a fraction
[tex]\Rightarrow 1\ \dfrac{1}{5}=\dfrac{1\times 5+1}{5}\\\\\Rightarrow \dfrac{6}{5}\ m=1.2\ m[/tex]
The difference between their Jumps is
[tex]\Rightarrow 1.5-1.2=0.3\ m[/tex]
Steve Jumps 0.3 m more than ken
How many cups are in 20 gallons? AND how do I show my work for that?
correct=brainliest
Which of the following describes the root of the following function? f[x] = -x2 3x + 1 Select one a. Exactly 1 rational root. b. 2 distinct rational roots. c. 2 distinct irrational roots. d. 2 distinct imaginary roots.
Answer:
please stop being lazy by using OCR! next time type the question!
there's nothing such as = -x2 3x + 1
it's probablhy f(x) = -x² + 3x + 1
Answer:
2 distinct irrational roots
Step-by-step explanation:
pls help question is on picture
Answer:
9/15 = 3/5 (simplified)
Step-by-step explanation:
In a right triangle, the cosine is the ratio of the adjacent side to the hypotenuse:
[tex]\cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}}[/tex]
The adjacent side is the side that makes up the angle but is not the hypotenuse.
I'm assuming the answer box should ask for cos(theta) rather than cos(x).
Need help confused on this problem
Answer:
whats ur question?
Step-by-step explanation:
7
If n=100 and p (p-hat) = 0.72, construct a 95% confidence interval. Give your answers to three decimals.
To find the 95% confidence interval when n=100 and p=0.72, we can use the following formula:
$$\left(\hat{p}-z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$$
Where, $\hat{p}$ is the point estimate of the population proportion, $n$ is the sample size, $z_{\alpha/2}$ is the critical value of the standard normal distribution at a significance level of $\alpha$, which can be obtained from a table. For a 95% confidence level, $\alpha$ is equal to 0.05/2 = 0.025 on each tail.
The corresponding z-value is 1.96 (approximately).Hence, plugging in the values, we get
$$\begin{aligned}\left(0.72-1.96 \sqrt{\frac{0.72(0.28)}{100}}, 0.72+1.96 \sqrt{\frac{0.72(0.28)}{100}}\right) \\ \left(0.631, 0.809\right)\end{aligned}$$
Therefore, the 95% confidence interval is (0.631, 0.809) rounded to three decimal places.
To know more about formula refer to:
https://brainly.com/question/30098467
#SPJ11
Here is a simple ODE to solve numerically from t=0 to t=40 the following ODE:
dy/dt = sin(t) - 0.1 *y
The initial conditions is y=3 at t=0. You may use ode24, ode45, or other tools. Since this is a modeling exercise, you need not discuss error.
The particular solution to the differential equation with the initial condition y(0) = 1 is:
[tex]y = 1 + cos(t) + 1 - e^{(cos(t))[/tex]
To solve the given differential equation:
dy/dt + sin(t) = 1
We can rewrite it in the standard form of a first-order linear homogeneous differential equation:
dy/dt = 1 - sin(t)
The integrating factor for this equation is [tex]e^{(\int(-sin(t))dt)} = e^{(-cos(t)).[/tex]
Now, multiply both sides of the equation by the integrating factor:
[tex]e^{(-cos(t)) \times dy/dt} = (1 - sin(t)) \times e^{(-cos(t))[/tex]
The left-hand side can be rewritten using the chain rule:
[tex]d/dt [e^{(-cos(t))} \times y] = (1 - sin(t)) \times e^{(-cos(t))[/tex]
Integrate both sides with respect to t:
[tex]\int d/dt [e^{(-cos(t))} \times y] dt = \int (1 - sin(t)) \times e^{(-cos(t)) dt[/tex]
[tex]e^{(-cos(t))} \times y = \int (1 - sin(t)) \times e^{(-cos(t)) dt[/tex]
To evaluate the integral on the right-hand side, let u = -cos(t), du = sin(t) dt:
[tex]e^{(-cos(t))} \times y = \int (1 - sin(t)) \times e^{(-cos(t)) dt[/tex]
[tex]= \int (1 - sin(t)) \times e^u du[/tex]
[tex]= \int (e^u - sin(t) \times e^u) du[/tex]
[tex]= e^u - \int sin(t) \times e^u du[/tex]
Now, integrate the second term by parts:
[tex]\int sin(t) \times e^u du = -e^u \times cos(t) + \int e^u \times cos(t) dt[/tex]
Substituting the expression back into the equation:
[tex]e^{(-cos(t))} \times y = e^u - (-e^u \times cos(t) + \int e^u \times cos(t) dt)[/tex]
Simplifying:
[tex]e^{(-cos(t))} \times y = e^{(-cos(t))} + e^{(-cos(t))} \times cos(t) - \int e^{(-cos(t))} \times cos(t) dt[/tex]
To solve the remaining integral, let v = -cos(t), dv = sin(t) dt:
[tex]\int e^{(-cos(t))} \times cos(t) dt = \int e^v \times (-dv)[/tex]
[tex]= -\int e^v dv[/tex]
[tex]= -e^v + C[/tex]
[tex]= -e^{(-cos(t))} + C[/tex]
Substituting back into the equation:
[tex]e^{(-cos(t))} \times y = e^{(-cos(t))} + e^{(-cos(t))} \times cos(t) - (-e^{(-cos(t))} + C)[/tex]
Divide both sides by [tex]e^{(-cos(t))[/tex]:
[tex]y = 1 + cos(t) + 1 + C \times e^{(cos(t))[/tex]
Using the initial condition y(0) = 1, we can substitute the values into the equation:
[tex]1 = 1 + cos(0) + 1 + C \times e^{(cos(0))[/tex]
[tex]1 = 1 + 1 + C \times e^1[/tex]
[tex]C \times e = -1[/tex]
Therefore, the particular solution to the differential equation with the initial condition y(0) = 1 is:
[tex]y = 1 + cos(t) + 1 - e^{(cos(t))[/tex]
Learn more about differential equation click;
https://brainly.com/question/32524608
#SPJ4
Complete question =
Solve the following differential equation for values of t between 0 and 4, with the initial condition of y= 1 when t = 0,
dy/dt + sin(t) = 1
Write and solve an equation to find the missing dimension of the figure.
(WILL GIVE BRAINLYSSS)
Answer:
2(11*9) + 2(11*h) + 2(9*h) = 558
h = 9 in.
Step-by-step explanation:
2(11*9) + 2(11*h) + 2(9*h) = 558
198 + 22h + 18h = 558
40h = 558-198
40h = 360
h = 9 in.
Steam enters an inclined pipe with an elevation change of +71 m operating at steady state with a specific enthalpy of 2744 kJ/kg and a mass flow rate of 3 kg/s. Assuming there is no significant change in kinetic energy from inlet to exit, and the rate of heat transfer from the surrounding to steam is 696 kW, what is the specific enthalpy at the exit of the pipe?
The specific enthalpy at the exit of the pipe is 2804 kJ/kg.
The expression of specific enthalpy at the exit of the pipe can be found by the following method:
Here, m = mass flow rate of the steam = 3 kg/s
q1 = specific enthalpy at inlet of the pipe = 2744 kJ/kg
W = work done on the system = 0 (steady-state)
Q = rate of heat transfer = 696 kW
z1 = elevation of the inlet = 0 m
z2 = elevation of the outlet = +71 m
Since the rate of heat transfer is given as
Q = -m(h2 - h1) + W + Q_hot
So, h2 = [Q - Q_hot + m(h1) - W]/m
Where W = 0 and Q_hot = 0
h2 = (696 - 0 + 3(2744))/3
h2 = 2804 kJ/kg
Therefore, the specific enthalpy at the exit of the pipe is 2804 kJ/kg.
To know more about specific enthalpy, refer to the link below:
https://brainly.com/question/28166058#
#SPJ11
Michelle wants to buy a new phone. There are several stores that sell the phone she wants, and each store offers
a different discount. The information on each store's discount offer for the phone Michelle wants to buy is
summarized in the table.
Price
Discount
Store
Big Town Electronics
$120
10% off
Central Phones
$120
$10 off
Main Street Mobile
$160
30% off
Phone Forum
$125
$16 off
Wireless Inc.
$110
No discount
At which store would Michelle's total cost be the least after the discount?
А
Big Town Electronics
B
Wireless Inc.
с
Main Street Mobile
D
Phone Forum
Step-by-step explanation:
hey, hope it helps.. :))
please give answers to 13,14,15,16 DUE TODAY .
ILL GIVE BRAINLIEST
Answer:
13.) 237 millimeters
14.) 87.5 feet (87 feet 6 inches)
15.) 28
16.) 121 degrees
Step-by-step explanation:
16.) The "arc length" formula is s = rФ, where Ф represents the central angle in radians (not degrees).
Here r = 18 ft and s = 38 ft, and so:
38 ft
s = rФ becomes Ф = ------------ = 2.111 radians
18 ft
which, in degrees, is:
2.111 rad 180 deg
------------- * --------------- = 121 degrees, to the nearest degree
1 3.142
Eva uses 10 tiles to make a mosaic. Five of the tiles are blue. What fraction, in simplest form, represents the tiles that are blue?
Answer: 1/2
Step-by-step explanation:
From the question, we are informed that Eva uses 10 tiles to make a mosaic and that five of the tiles are blue.
The fraction that represents the tiles that are blue will be:
= Number of blue tiles / Total number of tiles
= 5/10
= 1/2
We've established that heights of 10-year-old boys vary
according to a Normal distribution with mu = 138cm and sigma = 7cm
What proportion is between 152 and 124 cm ?
The proportion of values between 152 and 124 cm is 0.8996 or 89.96%.
Proportion between 152 and 124 cm according to a normal distribution with mu = 138cm and sigma = 7cm is 0.8996.
According to the given question, we know that the mean is μ = 138 cm, standard deviation is σ = 7 cm.
We have to find the proportion that is between 152 and 124 cm.
To solve the problem, first we have to find the z-scores for 152 and 124 cm.
We can calculate the z-scores as follows:Z-score for 152 cm is given by:z152=(152−138)7=2z_{152}=\frac{(152-138)}{7}=2z152=(152−138)7=2Z-score for 124 cm is given by:z124=(124−138)7=−2z_{124}=\frac{(124-138)}{7}=-2z124=(124−138)7=−2
We can use a z-table or calculator to find the proportion of values between these two z-scores.
The area under the standard normal curve between z = -2 and z = 2 is approximately 0.8996.
Therefore, the proportion of values between 152 and 124 cm is 0.8996 or 89.96%.
Know more about normal distribution here:
https://brainly.com/question/15103234
#SPJ11
HELP!!! answer quickly pls
Which of these statements is true? Check all that apply.
CDs have a higher mean than digital.
The range of digital is 800.
The median of CDs is 400,
Both have the same interquartile range.
O Both have the same median,
Digital's mean is around 467.
Answer:
abd
Step-by-step explanation:
im smart
Answer:
The answer is A B D F
Step-by-step explanation:
I took the test sorry I don't have a better explanation.
What is equity? What does it mean to have positive equity? What does it mean to have negative equity?
Problem #1: Ms. Barrett is doing an art project with her class. She has 4 sheets of tissue paper. If she gives each student a third of a sheet, how many students will get tissue paper?
Answer:
12 students.
Step-by-step explanation:
If you had 4 sheets, you would want to start by dividing them all in 3's, since that's easiest. (open the file i just for a better example of how the sheet should look).
Now, let's assume these sheets are regular office sized paper.
Start by handing 1 third out to A student.
Now, since there are 4 sheets, divided in 3 sections, we multiply to see the result of how many sections there are.
4 x 3 = 12.
Therefore, 12 students will receive a third of the tissue paper.
PLEASE ANSWER MY RECENT! ITS FOR 47 POINTS AND SUPER EASY! I JUST NEED ADVICE AND NO ONE HAS ANSWERD YET!
Answer:
Hi
Step-by-step explanation:
Last week's and this week's low temperatures are shown in the table below.
Low Temperatures for 5 Days This Week and Last Week
Low Temperatures.
This Week (°F)
Low Temperatures
Last Week (°F)
4
10
13 9
6
5
9
8
6
LO
5
Which measures of center or variability are greater than 5 degrees? Select three choices.
the mean of this week's temperatures
O the mean of last week's temperatures
the range of this week's temperatures
the mean absolute deviation of this week's temperatures
the mean absolute deviation of last week's temperatures
The mean absolute deviation of last week's temperatures is 7.2°F.
Given below is the table of last week's and this week's low temperatures:Last week's temperatures: 29°F, 35°F, 42°F, 46°F, 52°FThis week's temperatures: 27°F, 31°F, 35°F, 38°F, 42°F, 46°F, 50°F
The range of this week's temperatures is found by subtracting the smallest value from the largest value. Therefore, the range of this week's temperatures is 50°F - 27°F = 23°F.
Mean absolute deviation is a measure of how much the data deviates from the mean of the data. To find the mean absolute deviation of last week's temperatures, we first need to find the mean of the data set.Using the formula for mean, we have:
Mean = (29 + 35 + 42 + 46 + 52)/5 = 40.8°F
To find the absolute deviations of each temperature from the mean, we need to subtract each temperature from the mean and take the absolute value.Absolute deviations:
|29 - 40.8| = 11.8|35 - 40.8|
= 5.8|42 - 40.8|
= 1.2|46 - 40.8|
= 5.2|52 - 40.8|
= 11.2
Next, we need to find the mean of these absolute deviations. Using the formula for mean again, we have:Mean absolute deviation = (11.8 + 5.8 + 1.2 + 5.2 + 11.2)/5 = 7.2°F
To learn more about : mean
https://brainly.com/question/1136789
#SPJ8