a laptop has a listed price of $788.95 before tax. if the sales tax rate is 8.25%, find the total cost of the laptop with sales tax included.

Answers

Answer 1
i think it’s $854.04

Related Questions

Men's heights are normally distributed with mean 69.0 inches and standard deviation of 2.8 inches. If 16 men are randomly selected, find the probability that they have a mean height greater than 70 inches.

Answers

Answer:the probability is 42%

Step-by-step explanation:

k

use the big-θ theorems (not bounding with big-o and big-ω!) to find good reference functions for each of the following:i. 3n2+5n(2n+7)ii. n(n+1)/2iii. 3n+3n6+5logn2(n)iv. n(n-1)/(6n2+log2(n))

Answers

We can see that this function is of the same order of magnitude as 1/n. Therefore, we can say that (n-1)/(6n) = Θ(1/n), and 1/n is a good reference function for this function.

To find good reference functions for each of the given functions using the big-Theta notation, we need to find a lower and an upper bound that is both of the same order of magnitude as the function.

i. 3n² + 5n(2n+7)

Expanding the expression inside the parentheses and simplifying, we get:

3n² + 10n² + 35n

= 13n² + 35n

We can see that this function is of the same order of magnitude as n^2. Therefore, we can say that 13n² + 35n = Θ(n²), and n² is a good reference function for this function.

ii. n(n+1)/2

Expanding and simplifying, we get:

n(n+1)/2 = (n² + n)/2

We can see that this function is of the same order of magnitude as n². Therefore, we can say that (n² + n)/2 = Θ(n²), and n² is a good reference function for this function.

iii. 3n + [tex]3n^6[/tex] + 5logn(2n)

We can see that the term [tex]3n^6[/tex] dominates the other terms for large values of n. Therefore, we can say that 3n + [tex]3n^6[/tex] + 5logn(2n) = Θ([tex]n^6[/tex]), and [tex]n^6[/tex] is a good reference function for this function.

iv. n(n-1)/(6n² + log2(n))

For large values of n, the logarithmic term becomes negligible compared to the quadratic term in the denominator. Therefore, we can approximate the function as:

n(n-1)/(6n² + log2(n)) ≈ n(n-1)/(6n²)

= (n-1)/(6n)

Learn more about magnitude here:

https://brainly.com/question/2596740

#SPJ11

find the volume v of the described solid s. a right circular cone with height 4h and base radius 7r. V=Finding the Volume:The objective is to find the volume of the described solid.The general form of volume of the right circular cone is V=13πr^2hBy applying the given value in the formula to get a resultant part.

Answers

The volume of the described solid is (490/7) π h^3.

The formula for the volume of a right circular cone is:

V = 1/3 πr^2h

In this case, the cone has height 4h and base radius 7r. We need to express the volume in terms of h and r. Since the base radius is 7r, we can write:

r = (1/7) b

where b is the radius of the base of the cone. To find b, we use the fact that the height of the cone is 4h and the base radius is 7r:

h^2 + r^2 = (4h)^2

Substituting r = (1/7) b, we get:

h^2 + (1/49) b^2 = 16h^2

Solving for b, we get:

b^2 = 49(16h^2 - h^2) = 49(15h^2) = 735h^2

Therefore, b = sqrt(735)h, and the volume of the cone is:

V = 1/3 πr^2h = 1/3 π(49/49) b^2 (1/7) 4h = (2/21) π (735h^3)

Simplifying, we get:

V = (490/7) π h^3

Therefore, the volume of the described solid is (490/7) π h^3.

To learn more about Substituting visit:

https://brainly.com/question/10423146

#SPJ11

Graph the following line y= 3/2x-5

Answers

A graph of the linear equation y = 3x/2 - 5 in slope-intercept form is shown in the image attached below.

How to graph the solution to this linear equation?

In order to to graph the solution to the given linear equation on a coordinate plane, we would use an online graphing calculator to plot the given linear equation and then take note of the point that lie on it;

y = 3x/2 - 5

Next, we would use an online graphing calculator to plot the given linear equation as shown in the graph attached below.

Based on the graph (see attachment), we can logically deduce that a possible solution for the linear equation is the ordered pairs (0, -5) and (3.333, 0), which corresponds to the y-intercept and x-intercept respectively.

Read more on solution here: https://brainly.com/question/29283759

#SPJ1

Let XI, X2, Xn be a random sample from a N(μ, σ2) population. For any constant k 〉 0, define σ2-21-1(k-_. con- sider as an estimator for σ2 (a) Compute the bias of σ in terms of k. [Hint: The sample variance is unbiased, and σ (n-1)s2/k.] (b) Compute the variance of in terms of k. Hint: (c) Compute the mean squared error of k in terms of k. (d) For what values of k is the mean squared error of minimized?

Answers

Answer:

(a) The bias of the estimator for σ^2, denoted as MSE(σ^2), is defined as the difference between the expected value of the estimator and the true value of the parameter. In this case, the estimator is (n-1)s^2 / k, where n is the sample size, s^2 is the sample variance, and k is a constant greater than 0.

The expected value of the sample variance s^2 is equal to the true variance σ^2, since s^2 is an unbiased estimator of σ^2. Therefore, the bias of the estimator for σ^2 is given by:

Bias(σ^2) = E[(n-1)s^2 / k] - σ^2

Now substituting the value of s^2, we get:

Bias(σ^2) = E[(n-1)(σ^2) / k] - σ^2

Simplifying further:

Bias(σ^2) = (n-1)σ^2 / k - σ^2

(b) The variance of the estimator for σ^2, denoted as Var(σ^2), is given by the variance of the sample variance s^2, which can be calculated as:

Var(σ^2) = Var[(n-1)s^2 / k]

Since s^2 is an unbiased estimator of σ^2, Var[(n-1)s^2] = 2(n-1)^2σ^4 / (k^2(n-3)), using the known formula for the variance of sample variance.

Therefore, substituting the value of Var[(n-1)s^2] into the equation, we get:

Var(σ^2) = 2(n-1)^2σ^4 / (k^2(n-3))

(c) The mean squared error (MSE) of the estimator for σ^2, denoted as MSE(σ^2), is the sum of the variance and the square of the bias:

MSE(σ^2) = Var(σ^2) + Bias(σ^2)^2

Substituting the values of Var(σ^2) and Bias(σ^2) from parts (a) and (b), respectively, we get:

MSE(σ^2) = 2(n-1)^2σ^4 / (k^2(n-3)) + [(n-1)σ^2 / k - σ^2]^2

(d) To minimize the mean squared error of the estimator, we need to find the value of k that minimizes the MSE(σ^2). This can be done by taking the derivative of the MSE(σ^2) with respect to k, setting it equal to zero, and solving for k. However, since the equation for MSE(σ^2) is quite complex, it may not have a simple closed-form solution for k. In practice, numerical optimization techniques can be used to find the value of k that minimizes the MSE(σ^2) by iterating over a range of possible values for k and calculating the corresponding MSE(σ^2) for each value. The value of k that gives the lowest MSE(σ^2) can then be chosen as the optimal value.

Section 7.2: Problem 7 (1 point) Previous Problem Problem List Next Problem Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis. y= x², y = 0, x = 1, about the y-axis

Answers

The volume of the solid obtained by rotating the region bounded by the curves y = x², y = 0, x = 1 about the y-axis is π/2 cubic units.

How to find the volume of the solid obtained by rotating the region bounded by the curves?

To find the volume of the solid obtained by rotating the region bounded by the curves y = x², y = 0, x = 1 about the y-axis, we can use the method of cylindrical shells.

Consider a thin strip of width dx at a distance x from the y-axis. When this strip is rotated about the y-axis, it generates a cylindrical shell with radius x and height y = x².

The volume of the cylindrical shell is given by:

dV = 2πx(y)dx

= 2πx(x²)dx

= 2πx³dx

To find the total volume, we need to integrate the volume of all such cylindrical shells from x = 0 to x = 1:

V = ∫₀¹ 2πx³ dx

= 2π ∫₀¹ x³ dx

= 2π [x⁴/4]₀¹

= 2π(1/4)

= π/2

Therefore, the volume of the solid obtained by rotating the region bounded by the curves y = x², y = 0, x = 1 about the y-axis is π/2 cubic units.

Learn more about volume of solid

brainly.com/question/12649605

#SPJ11

(1 point) carry out the hexadecimal addition ca10 4f57 directly in hexadecimal. show your work. do not convert the numbers to decimal, add them in decimal and convert the sum back to hexadecimal.

Answers

The hexadecimal addition of CA10 and 4F57 directly in hexadecimal is B197.

How to carry out the hexadecimal addition?

Hi! I'd be happy to help you carry out the hexadecimal addition of CA10 and 4F57 directly in hexadecimal. Here are the steps:

1. Write down the two hexadecimal numbers one below the other, with the least significant digits (rightmost digits) aligned:
  CA10
+ 4F57

2. Perform column-wise addition starting from the rightmost column (least significant digit):
  0 + 7 = 7

3. Move to the next column and add the corresponding digits. If the sum exceeds 15 (F in hexadecimal), carry over the excess to the next column:
  1 + 5 = 6 (no carry over needed)

4. Continue the addition for the remaining columns, remembering to carry over when necessary:
  A + F = 19 (in hexadecimal, this is 13); carry over the 1
  1 + C + 4 = 11 (in hexadecimal, this is B)

5. Combine the results from each column to obtain the final sum: B197

So, the hexadecimal addition of CA10 and 4F57 directly in hexadecimal is B197.

Learn more about hexadecimal addition

brainly.com/question/28875438

#SPJ11

reparametrize the curve with respect to arc length measured from the point where t = 0 in the direction of increasing t. (enter your answer in terms of s.) r(t) = e2t cos(2t) i 6 j e2t sin(2t) k

Answers

To reparametrize the curve with respect to arc length, we need to find the arc length function s(t) and then solve for t in terms of s.

The arc length function is given by:

s(t) = ∫√[r'(t)·r'(t)] dt

where r'(t) is the derivative of r(t) with respect to t.

We can calculate r'(t) as:

r'(t) = (2e^(2t)cos(2t) - 4e^(2t)sin(2t))i + (12e^(2t)sin(2t))j + (2e^(2t)sin(2t) + 6e^(2t)cos(2t))k

Now we can substitute this into the arc length formula and integrate:

s(t) = ∫√[(2e^(2t)cos(2t) - 4e^(2t)sin(2t))^2 + (12e^(2t)sin(2t))^2 + (2e^(2t)sin(2t) + 6e^(2t)cos(2t))^2] dt

This integral looks quite complicated, so we will use a numerical integration method to approximate s(t).

We can use the trapezoidal rule to numerically integrate s(t) between t = 0 and some value t = T:

s(T) ≈ ∑[s(iΔt) + s((i+1)Δt)]/2 * Δt

where Δt = T/n is the step size, and n is the number of intervals we use.

Once we have approximated s(t), we can solve for t in terms of s using numerical methods such as the bisection method or Newton's method.

For example, if we want to find the value of t that corresponds to s = 10, we can solve:

s(t) = 10

for t using numerical methods. Once we have t, we can plug it back into r(t) to get the reparametrized curve in terms of arc length s.

To know more about arc length refer to

https://brainly.com/question/2005046

#SPJ11

Recently many companies have been experimenting with telecommuting, allowing employees to work at home on their computers. Among other things, telecommuting is supposed to reduce the number of sick days taken. Suppose that at one firm, it is known that over the past few years employees have taken a mean of 5.4 sick days. This year, the firm introduces telecommuting. Management chooses a simple random sample of 80 employees to follow in detail, and, at the end of the year, these employees average 4.4 sick days with a standard deviation of 2.8 days. Let
μ
represent the mean number of sick days for all employees of the firm.
a.Find the P-value for testing
H0
:
μ
≥ 5.4 versus
H1
:
μ
< 5.4. Round the answer to four decimal places.
b.
The P-value calculated for testing H0 : µ ≥ 5.4 versus H1 : µ < 5.4 is a small probability; hence, it is plausible that the mean number of sick days is at least 5.4.
True or false

Answers

The required P-value is 0.0014. The given statement "The P-value calculated for testing H0 : µ ≥ 5.4 versus H1 : µ < 5.4 is a small probability; hence, it is plausible that the mean number of sick days is at least 5.4" is false because a small P-value indicates that the null hypothesis (H0) is less likely to be true.

a. To find the P-value for testing H0: μ ≥ 5.4 versus H1: μ < 5.4, first calculate the test statistic:

Test statistic (z) = (Sample mean - Population mean) / (Standard deviation / √(Sample size))
z = (4.4 - 5.4) / (2.8 / √(80))
z ≈ -3.19

Now, use the z-table or a calculator to find the P-value corresponding to the test statistic:
P-value ≈ 0.0014 (rounded to four decimal places)

b. The statement "The P-value calculated for testing H0 : µ ≥ 5.4 versus H1 : µ < 5.4 is a small probability; hence, it is plausible that the mean number of sick days is at least 5.4" is FALSE.

A small P-value indicates that the null hypothesis (H0) is less likely to be true and we have evidence to support the alternative hypothesis (H1) that the mean number of sick days is less than 5.4.

Learn more about P-value:

https://brainly.com/question/13786078

#SPJ11

The required P-value is 0.0014. The given statement "The P-value calculated for testing H0 : µ ≥ 5.4 versus H1 : µ < 5.4 is a small probability; hence, it is plausible that the mean number of sick days is at least 5.4" is false because a small P-value indicates that the null hypothesis (H0) is less likely to be true.

a. To find the P-value for testing H0: μ ≥ 5.4 versus H1: μ < 5.4, first calculate the test statistic:

Test statistic (z) = (Sample mean - Population mean) / (Standard deviation / √(Sample size))
z = (4.4 - 5.4) / (2.8 / √(80))
z ≈ -3.19

Now, use the z-table or a calculator to find the P-value corresponding to the test statistic:
P-value ≈ 0.0014 (rounded to four decimal places)

b. The statement "The P-value calculated for testing H0 : µ ≥ 5.4 versus H1 : µ < 5.4 is a small probability; hence, it is plausible that the mean number of sick days is at least 5.4" is FALSE.

A small P-value indicates that the null hypothesis (H0) is less likely to be true and we have evidence to support the alternative hypothesis (H1) that the mean number of sick days is less than 5.4.

Learn more about P-value:

https://brainly.com/question/13786078

#SPJ11

determine the equation of the tangent plane to z = ln(2x y) at (1, 3).

Answers

The equation of the tangent plane to z = ln(2x y) at (1, 3) is x + (1/3)y - z + ln(2) + ln(3) = 0.

To find the equation of the tangent plane to the surface z = ln(2xy) at the point (1, 3), we need to find the partial derivatives of z with respect to x and y at (1, 3), which are:

∂z/∂x = 1/x

∂z/∂y = 1/y

Evaluating these partial derivatives at (1, 3), we get:

∂z/∂x(1, 3) = 1/1 = 1

∂z/∂y(1, 3) = 1/3

So the normal vector to the tangent plane at (1, 3) is given by:

N = <1, 1/3, -1>

Now we need to find the constant term in the equation of the plane. To do this, we substitute the coordinates of the point (1, 3) into the equation of the surface:

z = ln(2xy) = ln(2(1)(3)) = ln(6)

So the equation of the tangent plane is:

x + (1/3)(y - 3) - z + ln(6) = 0

Simplifying, we get:

x + (1/3)y - z + ln(2) + ln(3) = 0

So the equation of the tangent plane to the surface z = ln(2xy) at the point (1, 3) is x + (1/3)y - z + ln(2) + ln(3) = 0.

Know more about tangent here:

https://brainly.com/question/10053881

#SPJ11

let g be the function with first derivative g′(x)=√(x^3 + x) for x>0. if g(2)=−7, what is the value of g(5) ?(A) 4.402 (B) 11.402 (C) 13.899 (D) 20.899

Answers

The value of g(5) is 20.899 when the function with first derivative is  g′(x)=√(x³ + x), option D is correct.

What is Differential equation?

A differential equation is an equation that involves one or more functions and their derivatives.

To find the value of g(5), we need to integrate the given first derivative g′(x) and then evaluate the function g(x) at x = 5.

Let's find the antiderivative (integral) of g′(x):

∫√(x³ + x) dx

To evaluate this integral, we can use the substitution method.

Let u = x³ + x.

Differentiating both sides with respect to x, we get:

du/dx = 3x² + 1

dx = du / (3x² + 1)

Substituting these values, we have:

g(x) = ∫√u × (du / (3x² + 1))

Now, we can evaluate the integral in terms of u:

g(x) = ∫√u / (3x² + 1) du

To simplify this integral, let's express it in terms of u:

g(x) = ∫√u / (3x² + 1) du

To find g(x), we need to evaluate this integral.

Performing the integral, we have:

[tex]g(x) = (2/9) (3x^2 + 1)^(^3^/^2^) + C[/tex]

Now, we can apply the initial condition g(2) = -7:

[tex]-7 = (2/9) (3(2^2) + 1)^(^3^/^2^) + C[/tex]

[tex]-7 = (2/9)(13)^(^3^/^2^) + C[/tex]

Solving for C:

[tex]C = -7 - (2/9) (13)^(^3^/^2^)[/tex]

Now, we have the expression for g(x):

[tex]g(x) = (2/9)(3x^2 + 1)^(^3^/^2^) - (2/9)(13)^(^3^/^2^) - 7[/tex]

To find g(5), we substitute x = 5 into this expression:

[tex]g(5) = (2/9) (3(5^2) + 1)^(^3^/^2^) - (2/9)(13)^(^3^/^2^) - 7[/tex]

Calculating this expression, we find:

g(5) = 20.899

Hence, the value of g(5) is 20.899.

To learn more on Differentiation click:

https://brainly.com/question/24898810

#SPJ6

You are going to spend no more than 3 hours hiking. During the 3 hours, you will take a 15 minute break. You can hike at a rate of 2.75 miles per hour. What is the greatest number of miles that you can hike?

Answers

Answer:

3 hours minus 15 minutes = 2 hours 45 minutes (2.75 hours)

(2.75 mph)(2.75 hours) = 7.5625 miles

Question is in the picture.

Answers

Based on the options provided, the roots of the quadratic equation associated with the graph are -6 and 3, as they are the values where the graph intersects the x-axis. Thus, option A is correct.

What is the quadratic equation?

In a quadratic equation in the form of [tex]"ax^2 + bx + c = 0"[/tex]  , the roots (or solutions) can be determined from the x-intercepts of the associated graph of the quadratic equation.

which represent the points where the graph intersects the x-axis. These points are also known as the "zeros" or "roots" of the quadratic equation.

In the case of the values -6 and 3 that you mentioned, they are the x-intercepts or zeros of the graph. This means that when you plug in -6 and 3 into the equation or function that corresponds to the graph, the result is zero.

Based on the options provided, the roots of the quadratic equation associated with the graph are -6 and 3, as they are the values where the graph intersects the x-axis.

Therefore, option a.  [tex]-6[/tex] and  [tex]3 i[/tex]s the correct answer.

Learn more about quadratic here:

https://brainly.com/question/22364785

#SPJ1

invent a paired data set, consisting of five pairs of observations, for which y¯1 and y¯2 are not equal, and sey¯1 > 0 and sey¯2 > 0, but sed¯ = 0.'

Answers

Pair 1: (2, 4), Pair 2: (4, 6), Pair 3: (6, 8), Pair 4: (8, 10), Pair 5: (10, 12)

How to create a paired data set?

To create a paired data set with the given conditions, we need to have five pairs of observations where the average of y1 and y2 are not equal, and the standard errors for y1 and y2 are greater than 0, but the standard error of the differences (sed) is 0.

Step 1: Invent five pairs of observations
Here's a paired data set that meets these requirements:

Pair 1: (2, 4)
Pair 2: (4, 6)
Pair 3: (6, 8)
Pair 4: (8, 10)
Pair 5: (10, 12)

Step 2: Verify that y¯1 and y¯2 are not equal
Calculate the average of y1 values and y2 values:

y¯1 = (2+4+6+8+10)/5 = 30/5 = 6
y¯2 = (4+6+8+10+12)/5 = 40/5 = 8

Since y¯1 ≠ y¯2 (6 ≠ 8), this condition is met.

Step 3: Verify that sey¯1 > 0 and sey¯2 > 0
As the data sets have different values, it's evident that the standard errors for y1 and y2 are greater than 0.

Step 4: Verify that sed = 0
Calculate the differences (d) for each pair:

d1 = 4 - 2 = 2
d2 = 6 - 4 = 2
d3 = 8 - 6 = 2
d4 = 10 - 8 = 2
d5 = 12 - 10 = 2

Since all differences are the same (2), the standard error of the differences (sed) is 0.
So, the paired data set provided meets all the given conditions.

Learn more about paired data set

brainly.com/question/17968124

#SPJ11

On Your Own
PAGE 3 in the notes
A propane tank in the shape of a cylinder has a radius of 10 meters and a height of
15 meters. Find the volume Use 3.14 as an approximation of pi. Round your answer
to the nearest tenth.
My drawing:

Answers

The volume of the propane tank that has the shape of a cylinder would be =4,710m³

How to calculate the volume of the cylinder?

The propane tank has the shape of a cylinder with a given radius and height therefore the formula for the volume of a cylinder should be used to calculate it's volume.

To calculate the volume of a cylinder, the formula that should be used would be = πr²h

Where ;

radius = 10m

height = 15 m

Volume = 3.14 × 10×10× 15

= 4,710m³

Therefore,the volume of the propane tank that has the shape of a cylinder would be = 4710m³.

Learn more about volume here:

https://brainly.com/question/27710307

#SPJ1

1 Write down whether each type of data is discrete or continuous. ​

Answers

Answer:

a. Discrete

b. Continuous

c. Continuous

d. Discrete

e. Discrete

f. Continuous

g. Discrete

h. Continuous

i. Continuous

j. Discrete

Step-by-step explanation:

a. The number of fence posts in a garden is a discrete data because it is a countable quantity and cannot be measured or subdivided. It can only take on integer values.

b. The length, in meters, of each car in a car park is a continuous data because it can take on any value within a certain range. It can be measured more accurately and can be subdivided into smaller units.

c. The weights of pineapples in a box is continuous data because it can take on any value within a certain range. It can be measured more accurately and can be subdivided into smaller units.

d. The number of pineapples in a box is discrete data because it is a countable quantity and cannot be measured or subdivided. It can only take on integer values.

e. The number of chairs in a classroom is discrete data because it is a countable quantity and cannot be measured or subdivided. It can only take on integer values.

f. The heights of the students in a classroom is continuous data because it can take on any value within a certain range. It can be measured more accurately and can be subdivided into smaller units.

g. The number of mobile phones sold in one day is discrete data because it is a countable quantity and cannot be measured or subdivided. It can only take on integer values.

h. The time it takes to complete a crossword puzzle is continuous data because it can take on any value within a certain range. It can be measured more accurately and can be subdivided into smaller units.

i. The waist sizes of trousers sold in a shop is continuous data because it can take on any value within a certain range. It can be measured more accurately and can be subdivided into smaller units.

j. The number of pairs of trousers sold in a shop is discrete data because it is a countable quantity and cannot be measured or subdivided. It can only take on integer values.

Find the equation for the plane through
P0(−8,3,−8)
perpendicular to the following line.
x = -8 + t
y = 3 + 4t
z = 3t
-infinity < t < +infinity
The equation of the plane is?

Answers

The equation of the plane that passes through the point P0(-8, 3, -8) and is perpendicular to the line with parametric equations x = -8 + t, y = 3 + 4t, z = 3t, where -∞ < t < +∞, is given by the equation: 4x + y - z = 35.

To find the equation of the plane, we need to determine a normal vector to the plane. Since the plane is perpendicular to the given line, the direction vector of the line, <4, 1, -1>, will be perpendicular to the plane as well. This direction vector will serve as the normal vector of the plane.

Next, we substitute the coordinates of the point P0(-8, 3, -8) into the equation of the plane, along with the components of the normal vector. This gives us the equation:

4(x - (-8)) + 1(y - 3) - 1(z - (-8)) = 0.

Simplifying, we get:

4x + y - z = 35.

Therefore, the equation of the plane passing through P0(-8, 3, -8) and perpendicular to the given line is 4x + y - z = 35.

To learn more about equation of the plane here:

brainly.com/question/28456872#

#SPJ11

The diameter of a circle is 8 miles. What is the area of a sector bounded by a 180° arc?

I NEED HELP THIS ASSIGNMENT IS DUE TOMORROW IS AN IXL

Answers

The radius of the circle is half the diameter, so it is 8/2 = 4 miles.

The central angle of the sector is 180°, which is half of the full circle's central angle of 360°.

The area of the sector is given by the formula:

A = (1/2) * r^2 * θ

where r is the radius and θ is the central angle in radians.

To find θ in radians, we can use the formula:

θ (in radians) = (π/180) * θ (in degrees)

For the 180° central angle, θ in radians is:

θ = (π/180) * 180 = π

Now we can plug in the values:

A = (1/2) * 4^2 * π
A = 8π

The area of the sector is 8π square miles.

Help me please I don’t understand

Answers

the correct answer is d! happy to help :)

Five years ago, Tom had a mass of 56 kg.His mass is 63 kg now. Find the percentage increased in his mass.​​​​

Answers

Tom's initial mass was 56 kg, and his current mass is 63 kg. The increase in his mass is therefore:

```
Δm = 63 kg - 56 kg = 7 kg
```

To find the percentage increase, we can use the formula:

```
% increase = (Δm / initial mass) x 100%
```

Plugging in the values we get:

```
% increase = (7 kg / 56 kg) x 100% = 12.5%
```

Therefore, Tom's mass has increased by 12.5%.

Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis.
y=0, y=cos(2x), x=π/4, x=0 the axis y=−5.

Answers

The volume of the solid obtained by rotating the region bounded by y=0, y=cos(2x), x=π/4, and x=0 about the axis y=-5 is approximately 16.47 cubic units.

To solve this problem, we need to use the method of cylindrical shells. We need to integrate the volume of a cylindrical shell that has height dy, radius r, and thickness dx. The radius r is the distance between the axis of rotation and the curve y=cos(2x).

Since the axis of rotation is y=-5, we need to find the distance between y=-5 and the curve y=cos(2x).

y = cos(2x)

-5 - cos(2x) = r

We need to solve for x in terms of y, so we use the inverse cosine function

2x = arccos(y)

x = 1/2 arccos(y)

Now we can set up the integral for the volume

V = ∫[π/4,0] ∫[-5-cos(2x),-5] 2πr dx dy

V = ∫[π/4,0] ∫[-5-cos(2x),-5] 2π(-5-cos(2x)-(-5)) dx dy

V = ∫[π/4,0] ∫[-5-cos(2x),-5] 2π(5+cos(2x)) dx dy

V = ∫[π/4,0] [2π(5x+xsin(2x)+C)]|-5-cos(2x),-5] dy

V = ∫[π/4,0] 2π(5+5sin(2x)-5cos(2x)-π/2) dy

V = 5π² - 25π/2

v = 16.47 cubic units.

Learn more about cylindrical shells here

brainly.com/question/31259146

#SPJ4

Where do I get the solutions manual of "Linear Algebra and its Applications" by Gilbert Strang?

Answers

The solutions manual for "Linear Algebra and its Applications" by Gilbert Strang can typically be found on online bookstores, such as Amazon or Barnes & Noble.

Alternatively, you may also be able to find a digital copy of the solutions manual through online forums or academic websites. It is important to note that obtaining unauthorized copies of copyrighted materials is illegal, so be sure to obtain the solutions manual through legitimate sources.


You can find the solutions manual for "Linear Algebra and its Applications" by Gilbert Strang on various online platforms, such as Amazon or the publisher's website. You can also check your local bookstore or academic library for a copy of the solutions manual.

To know more about Linear click here

brainly.com/question/30444906

#SPJ11

how long is a parking space ? select the best estimate

Answers

Answer:

So it would not be 6 cm because, that's like the size of a couple paper clips! it's not 6 millimeters either because that's very very small! 6 kilometers is ALOT! Do it would be 6 meters! A meter is about the length of a door frame! I hoped this helped! Good luck on that IXL!

if one wants to estimate the total volume within 60 cubicfoot with a 95onfidence interval using a ratio estimate, how many trees should be sampled?

Answers

To estimate the total volume within 60 cubic feet with a 95% confidence interval using a ratio estimate, one should sample approximately 27 trees.

To determine the required sample size, follow these steps:

1. Identify the desired confidence level (95% in this case).
2. Determine the acceptable margin of error (e.g., 5%).
3. Calculate the population variance (σ²) and mean (µ) from a pilot study or prior data.
4. Use the formula for sample size estimation in ratio estimation: n = (Z² × σ² × (µ/R)²) / E², where n is the sample size, Z is the critical value from the standard normal distribution corresponding to the desired confidence level (1.96 for 95%), σ² is the population variance, µ is the population mean, R is the desired ratio, and E is the acceptable margin of error.

By plugging the given values and solving for n, one can determine the necessary sample size of approximately 27 trees to achieve a 95% confidence interval for the total volume within 60 cubic feet using a ratio estimate.

To know more about margin of error click on below link:

https://brainly.com/question/10501147#

#SPJ11

plsssssssssssssssssss help

Answers

Answer:

2210in^3

Step-by-step explanation:

since volume= length *width *height

and area= length * width

u alr know area

so if area=l*w

and area= 130

then 130=l*w

so subsittute 130 for length and width

volume=(130*17)

=2210in^3

Answer:

Step-by-step explanation:

Volume  = Area x Height

Area = 130 in^2

Height = 17 in

Volume = 130 x 17

Volume = 2210

Prove that for each odd natural number n with n >= 3, (1 + 1/2) (1 - 1/3) (1 + 1/4) .... (1 + (-1)^n/n) = 1

Answers

For each odd natural number n with n >= 3, (1 + 1/2) (1 - 1/3) (1 + 1/4) .... (1 + (-1)^n/n) = 1.

We will use mathematical induction to prove the given statement for all odd natural numbers greater than or equal to 3.

Base case: Let n = 3. Then we have (1 + 1/2)(1 - 1/3) = (3/2) * (2/3) = 1, which satisfies the equation.

Inductive step: Assume the equation holds for some odd natural number k >= 3, i.e., (1 + 1/2) (1 - 1/3) (1 + 1/4) .... (1 + (-1)^k/k) = 1.

We will prove that the equation also holds for k+2.

We can rewrite the product for k+2 as:

(1 + 1/2) (1 - 1/3) (1 + 1/4) .... (1 - 1/(k+1)) (1 + 1/(k+2)) (1 - 1/(k+3))

Using the assumption, we can replace the first k terms with 1.

Thus, we get:

(1) (1 + 1/(k+2)) (1 - 1/(k+3)) = 1 * [(k+4)/(k+2)] * [(k+2)/(k+3)] = (k+4)/(k+3)

Therefore, the equation holds for k+2 as well. By mathematical induction, the statement holds for all odd natural numbers greater than or equal to 3.

To know more about natural number, here

https://brainly.com/question/4000459

#SPJ4

An item is regularly priced at $30. It is now priced at a discount of 80% off the regular price. What is the price now?

Answers

Answer: $24

Step-by-step explanation: (30*80)/100

The price now is $6.

what two numbers have a sum of “138” and a difference of “54”

Answers

To find two numbers that have a sum of 138 and a difference of 54, we can use a system of equations.

Let x be the larger number and y be the smaller number. Then we have:

x + y = 138 (equation 1)

x - y = 54 (equation 2)

We can solve this system of equations by adding equation 1 and equation 2:

2x = 192

Dividing both sides by 2, we get:

x = 96

Substituting x = 96 into equation 1, we get:

96 + y = 138

Subtracting 96 from both sides, we get:

y = 42

Therefore, the two numbers that have a sum of 138 and a difference of 54 are 96 and 42.

The population of bacteria in a petri dish is increasing exponentially. At noon, there were 32,600 bacteria in the dish. An hour later, there were 34,556 bacteria. Write a function to model this situation. Determine the percent increase of the bacteria each hour.

Answers

To model this situation, we can use the exponential growth equation:

N(t) = N0 * e^(rt)

where N(t) is the population at time t, N0 is the initial population, e is the base of the natural logarithm (approximately equal to 2.718), r is the growth rate, and t is the time elapsed.

We can use the given information to solve for r:

34,556 = 32,600 * e^(r*1)

e^(r*1) = 34,556 / 32,600

e^(r*1) = 1.0604

r = ln(1.0604)

r ≈ 0.0599

So the function that models the population of bacteria in the petri dish is:

N(t) = 32,600 * e^(0.0599t)

To determine the percent increase of the bacteria each hour, we can use the formula:

percent increase = [(new population - old population) / old population] * 100%

For the first hour, the old population is 32,600 and the new population is 34,556, so:

percent increase = [(34,556 - 32,600) / 32,600] * 100%

percent increase ≈ 5.98%

Therefore, the bacteria population is increasing by approximately 5.98% each hour.

pls help w this question, it’s prob easy but I’m rlly lazy thx

Answers

Answer:

For Line T:

[tex]m = \frac{5 - 14}{2 - 0} = - \frac{9}{2} [/tex]

Since Lines T and R are perpendicular, the slopes of these two lines are negative reciprocals. So Line R has slope 2/9. We have:

[tex]3 = \frac{2}{9} (4) + b[/tex]

[tex] \frac{27}{9} = \frac{8}{9} + b[/tex]

[tex]b = \frac{19}{9} [/tex]

[tex]y = \frac{2}{9} x + \frac{19}{9} [/tex]

So the equation of Line R is

y = (2/9)x + (19/9)

Other Questions
Describe the various methods that can be used to conduct direct observational research with and without intervention. Which of these methods give researchers the most control? The least? In a typical venture capital partnership, the waterfall progression will provide the GP's with their allocation of the capital gain before LP's receive a return of their principal investment. O True O False (T/F) the div instruction generates a divide overflow condition when the remainder is too large to fit into the destination operand. The width of the rectangle is 5 units less than the length if the area is 36 square units then find the dimension of the rectangle how many coulombs would be required to electroplate 35.0 grams of chromium by passing an electrical current through a solution containing crcl3? matter that makes up living and dead organisms in an ecosystem Show that the functions f(x1, x2) = x1^2 + x2^3 , and g(x1, x2) = x1^2 + x2^4 both have a critical point at (x1,x2) = (0,0) and that their associated Hessians are positive semi-definite. Then show that (0, 0) is a local(global) minimizer for g but is nota local minimizer for f. a salesperson has a five to twenty percent chance of selling to a new prospect, but a chance of selling additional products to an existing customer. group of answer choices 75 to 80% 60 to 70% 10 to 20% 25 to 30% 45 to 50% Question 5 1 pts What happens to the solubility of MgCO3 in water if 0.1 M HNO3 is added to the solution at 298 K? (Ksp = 4.0 x 10-5) O The solubility decreases. The solubility increases.The solubility is not affected. In Racial Formations by Michael Omi and Howard Winant, race is defined as a socio historical concept, what does that meanto the authors? Explain how race issocially constructed or strictly biological. Support your response with two paragraphs. Which of the following were results of the passage of Proposition 13 in California?- Many people left the state.- Home sales in California declined.- The state lost billions of dollars in revenue.- Public services like education deteriorated. What is x rounded to the nearest hundredth? Prove the following properties of an open set: 1. The empty set and the real numbers are open. 2. Any union of open sets is open. 3. The complement of an open set is closed. Also, prove the following properties of a closed set: 1. The empty set and the real numbers are closed. 3. Any intersection of a closed set is closed. 48 POINTS PLEASE HELP ME ASAP!The function f(x) = -0.05(x^2-18x -40) represents the path coming out of the cannon. If x is the horizontal distance from the cannon, what does f(x) represent? Recall that f(x) is a notation for the y-values of the function. what is the speed vb of the ball (relative to the ground) while it is in the air? express your answer in terms of mball , mcart , and u . The table shows the price and quantity demanded for toasters. Using the Midpoint Method, what is the price elasticity of demand between points C and D? Note: Remember to take the absolute value of the result and round to the nearest hundredth. Rounding should be done at the end of your calculation. Price Quantity Point A $9 20, 000 $10 B 19, 000 $11 C 18,000 $12 17,000 $13 E 16, 000 Which action is used to create the PAR for the MGIB elections? in the selection from blindness, how does the man respond to help from the good samaritan? choose three options. an operation that once started will run to completion without interruption Based upon a random sample of 30 seniors in a high school, a guidance counselor finds that 20 of these seniors plan to attend an institution of higher learning. A 90% confidence interval constructed from this information yields (0.5251, 0.8082). Which of the following is a correct interpretation of this interval? O This interval will capture the true proportion of seniors in our sample who plan to attend an institution of higher learning 90% of the time. o we can be 90% confident that 52.51% to 80.82% of seniors at this high school plan to attend an institution of higher learning we can be 90% confident that 52.51% to 80.82% of seniors in any high school plan to attend an institution of higher learning. O This interval will capture the true proportion of seniors from this high school who plan to attend an institution of higher learning 90% of the time.Previous question