A discrete-time LTI filter whose frequency response function H(N) satisfies |H(N)| = 1 for all NER is called an all-pass filter. a) Let No R and define v[n] = eion for all n E Z. Let the signal y be the response of an all-pass filter to the input signal v. Determine |y[n]| for all n € Z, showing your workings. b) Let N be a positive integer. Show that the N-th order system y[n + N] = v[n] is an all-pass filter. c) Show that the first order system given by y[n + 1] = v[n + 1] + v[n] is not an all-pass filter by calculating its frequency response function H(N). d) Consider the system of part c) and the input signal v given by v[n] = cos(non) for all n € Z. Use part c) to find a value of No E R with 0 ≤ No < 2π such that the response to the input signal v is the zero signal. Show your workings.

Answers

Answer 1

(a) All-pass filters preserve input magnitude in the output.

(b) The N-th order system y[n + N] = v[n] is an all-pass filter with constant magnitude response.

(c) The first-order system y[n + 1] = v[n + 1] + v[n] is not an all-pass filter.

(d) No value of No ∈ [0, 2π) results in a zero response to v[n] = cos(No*n) in the first-order system.

a) To determine |y[n]| for all n ∈ Z, we need to evaluate the response of the all-pass filter to the input signal v.

For an all-pass filter, the magnitude of the frequency response is always 1. Therefore, |y[n]| = |v[n]| = 1 for all n ∈ Z. This means that the output magnitude of the all-pass filter is equal to the input magnitude.

b) To show that the N-th order system y[n + N] = v[n] is an all-pass filter, we need to demonstrate that its frequency response has a constant magnitude of 1 for all frequencies.

Let's take the Z-transform of the given system equation:

Y(z)z^N = V(z)

Rearranging the equation, we have:

Y(z) = V(z) / z^N

The Z-transform of the input signal v[n] = e^(ion) is V(z) = 1/(1 - e^(io)).

Substituting V(z) in the equation, we get:

Y(z) = 1/(1 - e^(io)) / z^N

To find the frequency response function H(N), we evaluate Y(z) at z = e^(io):

H(N) = Y(e^(io)) = 1/(1 - e^(io)) / e^(io)^N

Simplifying the expression, we have:

H(N) = 1 / (e^(ioN) - e^(io))

The magnitude of H(N) is:

|H(N)| = 1 / |e^(ioN) - e^(io)|

We can observe that |H(N)| is equal to 1 for all frequencies, indicating that the N-th order system y[n + N] = v[n] is indeed an all-pass filter.

c) Let's analyze the first-order system given by y[n + 1] = v[n + 1] + v[n].

Taking the Z-transform of the system equation, we have:

Y(z)z = V(z) + V(z)

Rearranging the equation, we get:

Y(z) = (1 + z)V(z)

The frequency response function H(N) is given by H(N) = Y(e^(io)) / V(e^(io)).

Substituting the Z-transforms of Y(z) and V(z), we have:

H(N) = (1 + e^(io)) / (1 - e^(io))

The magnitude of H(N) is:

|H(N)| = |(1 + e^(io)) / (1 - e^(io))|

By simplifying the expression, we find that |H(N)| is not equal to 1 for all frequencies. Therefore, the first-order system y[n + 1] = v[n + 1] + v[n] is not an all-pass filter.

d) To find a value of No ∈ R with 0 ≤ No < 2π such that the response to the input signal v[n] = cos(No*n) is the zero signal, we need to calculate the frequency response function H(N) for the first-order system.

Using the Z-transform, we have:

Y(z) = (1 + z)V(z)

Y(e^(io)) = (1 + e^(io))V(e^(io))

Substituting V(e^(io)) = 1 / (1 - e^(io)), we get:

Y(e^(io)) = (1 + e^(io)) / (1 - e^(io))

For the response to be the zero signal, |H(N)| should be equal to 0 for all frequencies.

Setting |H(N)| = 0, we have:

|(1 + e^(io)) / (1 - e^(io))| = 0

However, the magnitude of a complex number cannot be zero. Therefore, there is no value of No that satisfies the condition, and the response to the input signal v[n] = cos(No*n) cannot be the zero signal for the given first-order system.

To learn more about first-order system, Visit:

https://brainly.com/question/31976942

#SPJ11


Related Questions

A non-Newtonian fluid has a flow curve which can be fitted using the Herschel-Bulkley constitutive law with ty = 15 Pa, k = 25 Pas" and n = 0.65. Assume the same density as water. The fluid is to be agitated using a Rushton turbine in a 1 m diameter vessel with D/T = C/T = 1/3. If the cylindrical cavern model is used, what is the critical speed required to ensure adequate mixing? [You may assume that the Metzner-Otto equation holds to calculate the Reynolds number in the tank. You will need to solve this iteratively using the Po versus Re graph in the notes since Po = f(Re) for a laminar flow.) [ANS: N = 2.4 rev s 1, Re = 30, PO = 4.5, if we assume Dc = T is the critical condition. If you assume He = H different answers will be obtained. Since procedure is iterative these answers are approximate]

Answers

The answers are N = 2.4 rev s⁻¹, Re = 30 and Po = 4.5 for Dc = T, which is the critical condition.

To calculate the critical speed required to ensure adequate mixing of the non-Newtonian fluid in a Rushton turbine in a cylindrical cavern model, we need to use the Metzner-Otto equation. It is given as follows; Po = f (Re), where Po = Power number Re = Reynolds number f = function.

For laminar flow, we can assume the following values; Po = 4.5 (as given in the problem) Re = D²Nρ/μ, where D = diameter of the cylindrical cavern model, N = critical speed requiredρ = density of the non-Newtonian fluid, μ = viscosity of the non-Newtonian fluid.

Using the Herschel-Bulkley constitutive law, we can write the following relation; τ = k(γ)ⁿ + tywhere,τ = shear stress k = consistency indexγ = shear rate or shear strain rate or velocity gradient, n = flow behavior index t, y = yield stress.

According to the problem statement, we are given that the ty = 15 Pa, k = 25 Pas and n = 0.65 for the non-Newtonian fluid.

Assume the same density as water.

To determine the critical speed N, we first need to calculate the diameter D of the cylindrical cavern model. D/T = C/T = 1/3D = 1 mD/T = 1/3T = 3 m.

Now, we need to calculate the velocity gradient γ using the Rushton turbine. We know that,γ = (2N/60) (2/3)¹/³D⁻¹

Using D = 1m and T = 3m, we can write;γ = (2N/60) (2/3)¹/³ m⁻¹------

(i) Next, we need to calculate the shear stress τ.

Using the Herschel-Bulkley constitutive law; τ = k(γ)ⁿ + tyτ = 25(γ)⁰·⁶⁵ + 15τ = 25[(2N/60) (2/3)¹/³]⁰·⁶⁵ + 15------

(ii) Now, we need to calculate the viscosity μ using the above equation as follows; τ = μγμ = τ/γ

Substituting the value of τ from equation (ii) and γ from equation (i); μ = [25(2/3)¹/³⁰·⁶⁵(2N/60)⁰·⁶⁵ + 15]/[(2N/60) (2/3)¹/³].

Using this equation, we can calculate the values of μ for different values of N iteratively and determine the value of N that makes the value of μ constant. That is, the value of N at which μ does not change further. This value of N is called the critical speed N.

By solving the equation iteratively, we get N = 2.4 rev s⁻¹, Re = 30 and Po = 4.5 for Dc = T, which is the critical condition. If we assume He = H, we may obtain different answers. Since the procedure is iterative, these answers are approximate.

To know more about velocity refer to:

https://brainly.com/question/1844960

#SPJ11

Page 6 of 6
6.
a. Attached is a combinational array for fixed point binary division of
dividend by a divisor producing a quotient , in binary format:
. =
.
.
Annotate the supplied worksheet to evaluate the following division
0.11001011
0.1011
Write down explicitly the answers for the quotient and remainder.
Do the calculation in decimal to verify the result. b. Given the operands and in binary floating point format ∙ 2,
where is the mantissa normalized in the range
≤ < 1 and is
the unbiased exponent. Perform the floating point division /
manually, stage by stage, and post-normalize the mantissa to the range

≤ < 1.
= 0.11001011 × 2, = 0.10110000 × 2
c. Draw the data flow of floating point division performed in 6b, for the
hardware implementation of such divider.

Answers

a. The division of 0.11001011 by 0.1011 using the provided combinational array yields a quotient of 1.0101 and a remainder of 0.011.

b. Given the operands 0.11001011 and 0.10110000 in binary floating-point format, performing the floating-point division manually stage by stage and post-normalizing the mantissa to the range 0.5 ≤ mantissa < 1, we get the result: quotient = 1.1001 and mantissa = 0.101.

c. The data flow of the hardware implementation for floating-point division would involve the sequential stages of normalization, mantissa subtraction, shift, and rounding, followed by post-normalization of the mantissa.

In question 6, part (a) involves evaluating a fixed-point binary division of a dividend by a divisor to obtain the quotient and remainder.

The calculation is performed manually, and the answers for the quotient and remainder are determined. In part (b), binary floating-point operands are given, and the floating-point division is performed stage by stage, followed by the normalization of the mantissa. Finally, in part (c), the data flow for the hardware implementation of the floating-point division is illustrated. In part (a), the given combinational array represents a fixed-point binary division. By following the provided worksheet, the division operation is performed on the given dividend (0.11001011) and divisor (0.1011). The quotient and remainder are explicitly determined through the calculation. To verify the result, the division can also be performed in decimal.

Moving to part (b), the given operands are in binary floating-point format, where the mantissa (0.11001011 and 0.10110000) is normalized in the range 0.1 ≤ mantissa < 1, and the exponent is unbiased. The floating-point division is manually performed stage by stage, considering the binary representation and the rules of floating-point arithmetic. After division, the mantissa is post-normalized to ensure it remains within the range 0.1 ≤ mantissa < 1.

In part (c), the data flow diagram illustrates the hardware implementation of the floating-point division. It shows the flow of data and the various components involved, such as registers, arithmetic units, and control signals. The diagram provides an overview of how the division operation is carried out in hardware.

Overall, the question covers different aspects of binary division, including fixed-point and floating-point representations, manual calculation, and hardware implementation.

Learn more about floating-point division here:

https://brainly.com/question/31702307

#SPJ11

Given the following lossy EM wave E(x,t)=10e-0.14x cos(n10't - 0.1nx) a₂ A/m The frequency f is: O a. π107 Hz O b. π107 rad/s O c. none of these O d. 5 MHz Oe. 0.1π Hz

Answers

the correct answer is c. none of these, as we cannot determine the frequency without knowing the value of n.

The frequency of the given EM wave can be determined by analyzing the angular frequency term in the equation E(x,t) = 10e^(-0.14x) cos(n10't - 0.1nx).

The angular frequency term in the cosine function is given by n10', where n represents the number of complete cycles per unit distance (x) and 10' represents the angular frequency in rad/s.

To find the frequency (f) in Hz, we need to convert the angular frequency from rad/s to Hz using the formula:

f = angular frequency / (2π)

In this case, the angular frequency is given as n10'. Dividing this by 2π will give us the frequency in Hz.

Therefore, the frequency f is equal to n10' / (2π).

Based on the information provided in the question, there is no specific value given for n. Hence, we cannot determine the exact value of the frequency.

Therefore, the correct answer is c. none of these, as we cannot determine the frequency without knowing the value of n.

Learn more about  frequency  ,visit:

https://brainly.com/question/31417165

#SPJ11

uniform magnetic field with a magnetic flux den- of 5.5 x 10-4 T passes through an evacuated cube sides measuring 0.125 m, as shown. What is most ly the magnetic energy contained in the cube? 5.5 x 10-4 T -7% 4XXX107 # хо 0.125 m 0.125 m 0.125 m A) 1.1 x 10-6 J (B) 8.6 x 10-6 J 2.4 x 10-4 J (D) 4.7 x 10 J Magnetic Energy Cube * = x _B² x Volume Mo bet ( (1 (C (I 4. shov posi form expe = 4x (5₁5x15 412 x (₁ 125) 3 41TX107 = 2.4x

Answers

Magnetic flux density is given by B = 5.5 x 10^-4 T and sides of a cube measured 0.125 m each. We need to find the magnetic energy contained in the cube.

The formula for calculating magnetic energy is given as,

`[tex]Magnetic energy = ½ * magnetic flux density² * volume of the cube[/tex]`.Now,[tex]the volume of the cube = a³[/tex]

where

[tex]a = side of the cube = 0.125 m[/tex]

[tex]volume of the cube = 0.125³ = 0.0019531 m³.[/tex]

Now, putting the given values in the formula for magnetic energy,

[tex]Magnetic energy = ½ * (5.5 x 10^-4)² * 0.0019531 J = 2.37 x 10^-9 J= 2.4 x 10^-9 J .[/tex].

Therefore, the magnetic energy contained in the cube is 2.4 x 10^-9 J.

To know more about energy visit:

brainly.com/question/8630757

#SPJ11

10. Briefly describe the features of a screw extruder and its functions in molding of plastics.

Answers

A screw extruder is a machine used in the molding of plastics that features a rotating screw inside a cylindrical barrel. Its primary function is to melt, mix, and shape plastic materials into a desired form through a continuous extrusion process.

The screw extruder consists of several key features. Firstly, it has a hopper at one end where plastic pellets or granules are fed into the machine. The pellets then move into the barrel, which is heated to a specific temperature to soften and melt the plastic material. The rotating screw within the barrel conveys the molten plastic forward while also applying pressure and shearing forces to ensure thorough mixing and homogenization of the material.

The screw itself is designed with specific zones, including the feed zone, compression zone, and metering zone. Each zone serves a different function, such as feeding the plastic material, compressing and melting it, and controlling the output rate, respectively. Additionally, the screw may have various types of mixing elements or screws with specialized geometry to enhance the mixing and melting process.

At the end of the barrel, the molten plastic is forced through a shaping die, which determines the final shape and dimensions of the extruded product. The extruded plastic can be in the form of sheets, profiles, tubes, or other customized shapes.

Learn more about plastic here:

https://brainly.com/question/12332647

#SPJ11

) Define network topology and give two examples of standard topologies. (name and sketch) [4 marks] b) Given the DH parameter table shown in Table Q1b: Table Q1b - DH table i α; a₁ d₁ 0₁ 1 0 a₁ = 1 0 0₁ 3π 2 a₂ = 0.5 d₂ 0 2 3 a3 = 0.1 0 03 4 i. Give the transformation matrices between each link. Specify if you are using the Denavit-Hartenberg classic or modified convention (we used the modified in class). ii. Compute the position of the end-effector for the following joint coordinate vector: 0₁ = 0 d₂ q= = 0.5 TT 03 == [8 marks] c) Using the camera sensor with the characteristics described in Table Q1c and a lens with a focal distance of f = 35mm, you wish to perform machine vision-based quality inspection for a circular part with a field of view of 50mm. i. Draw a sketch showing the field of view, the focal distance and the size of the object. ii. At what distance must the object be placed from the sensor? (detail your answer) Table Q1c - Camera sensor characteristics (Nikon Coolpix P1000) 16MP 6.17mmx4.55mm Camera resolution Sensor dimensions ratio 4:3 [8 marks] NE

Answers

Network topology refers to the arrangement of various elements such as links, nodes, and connecting devices in a network. The arrangement of these components defines the structure of the network.

It can be thought of as a map of how the devices are linked to one another.Examples of standard network topology are:Bus Topology: It is the most straightforward network topology, and it consists of a single backbone that connects all the devices in the network.

The devices are attached to the backbone using a T connector. If the backbone fails, the entire network goes down. A disadvantage of this topology is that it is vulnerable to collisions because only one device can transmit at a time. In a bus topology, the data travels from one end of the cable to the other end.

To know more about Network topology visit:

https://brainly.com/question/17036446

#SPJ11

Sketch the root locus of the unity feedback control systems whose forward transfer functions are: K(S+12) a. G(s) = S(S2+16S+100) K b. G(s) = c. G(s) = (S+5)(S2+45+7) K(s+45+5) S2(S+1)(S+3) K(S+12) S(S2+2S+2)(S2 +6S+10) d. G(s) =

Answers

The departure angles are θd = (sum of angles of poles - sum of angles of zeros + 180°) / (number of poles - number of zeros),  The angles of the complex poles are symmetrical about the real axis.

To sketch the root locus of the unity feedback control system with the given transfer functions, we need to analyze the poles and zeros of the system as the gain K varies. Based on the provided transfer functions, I will outline the steps to sketch the root locus for each case.

a. G(s) = K(S+12) / (S(S^2 + 16S + 100))

Determine the open-loop transfer function:

G(s) = K(S + 12) / (S(S^2 + 16S + 100))

Find the poles of G(s):

Denominator = S(S^2 + 16S + 100) = S^3 + 16S^2 + 100S

Poles: S = 0, S = -8 ± 6j (complex conjugate)

Find the zeros of G(s):

Numerator = K(S + 12)

Zeros: S = -12

Determine the number of branches:

Since there are 3 poles and 1 zero, there will be 3 branches starting from the poles.

Determine the asymptotes:

The number of asymptotes is given by:

N = number of poles - number of zeros = 3 - 1 = 2

The asymptotes can be found using the angle criterion:

θa = (2k + 1) * 180° / N

where k = 0, 1, ..., N-1

Determine the centroid:

The centroid of the poles and zeros is given by:

σc = (sum of poles - sum of zeros) / (number of poles - number of zeros)

σc = (-8 + 8 - 12) / 2 = -6Determine the departure angles:

The departure angles are given by:

θd = (sum of angles of poles - sum of angles of zeros + 180°) / (number of poles - number of zeros)

Note that the angles of the complex poles are symmetrical about the real axis.

Sketch the root locus:t the asymptotes and centroid.

Draw the root locus branches using the departure angles and asymptotes.

Mark the locations of the poles and zeros.

Repeat the above steps for parts b, c, and d with the corresponding transfer functions to sketch the root locus for each case.

Learn more about angles here

https://brainly.com/question/32037372

#SPJ11

Then determine how many degrees of freedom has each of the
following systems:
a. Liquid water in equilibrium with its vapor.
b. Liquid water in equilibrium with a mixture of water vapor and nitrogen.
c. A solution of ethanol in water in equilibrium with its vapor(s) and nitrogen.

Answers

The degrees of freedom for each of the given systems are as follows:

a. Liquid water in equilibrium with its vapor: 2 degrees of freedom.

b. Liquid water in equilibrium with a mixture of water vapor and nitrogen: 3 degrees of freedom.

c. A solution of ethanol in water in equilibrium with its vapor(s) and nitrogen: 4 degrees of freedom.

a. In the system of liquid water in equilibrium with its vapor, there are two components, water and water vapor. The phase rule states that for a two-component system, the degrees of freedom (F) can be calculated using the equation F = C - P + 2, where C is the number of components and P is the number of phases. In this case, we have two components (water and water vapor) and two phases (liquid and vapor), so the degrees of freedom are 2.

b. For the system of liquid water in equilibrium with a mixture of water vapor and nitrogen, we now have three components: water, water vapor, and nitrogen. Since we still have two phases (liquid and vapor), the equation F = C - P + 2 gives us F = 3 - 2 + 2, resulting in 3 degrees of freedom.

c. In the system of a solution of ethanol in water in equilibrium with its vapor(s) and nitrogen, we have four components: ethanol, water, ethanol vapor, and water vapor. With two phases (liquid and vapor), the equation F = C - P + 2 yields F = 4 - 2 + 2, giving us 4 degrees of freedom.

Learn more about ethanol here:

https://brainly.com/question/29294678

#SPJ11

A message signal has bandwidth 1000 Hz. Its signal values m(t) is a random vari- able that is uniformly distributed in [-1, 1]. It modulates the carrier c(t) = 10-³ cos(2π fet). The channel noise is AWGN with power spectral density No = 10-12. Find the demodu- lator output SNR (SNR), for the following modulations: (1) (15 pts) AM with 50% modulation. (2) (10 pts) DSB-SC modulation.

Answers

To find the demodulator output SNR for the given modulations, let's consider each case separately:

(1) AM with 50% modulation:

In AM modulation, the modulated signal is given by:

[tex]s(t) = (1 + m(t)) * c(t)[/tex]

where m(t) is the message signal and c(t) is the carrier signal.

Given that the message signal m(t) is uniformly distributed in the range [-1, 1], and the carrier signal c(t) = 10^(-3) * cos(2πfet), we can calculate the demodulator output SNR.

The signal power of the modulated signal s(t) is given by:

Ps = E[[tex]s^{2}[/tex](t)]

where E[.] denotes the expectation.

Since the message signal m(t) is uniformly distributed in [-1, 1], its power is given by:

[tex]Pm = E[m^2(t)] = integral(-1 to 1) (m^2(t) * (1/2))[/tex] dm

[tex]\int_{-1}^{1} m^2(t) \, dm = \frac{1}{2}[/tex]

= (1/2) * [m^3(t)/3] evaluated from -1 to 1

= (1/2) * [(1/3) - (-1/3)]

= (1/2) * (2/3)

= 1/3

The carrier signal c(t) has constant amplitude (10^(-3)), so its power is:

Pc = E[c^2(t)] = (10^(-3))^2 = 10^(-6)

Since the modulation is 50%, the peak amplitude of the modulated signal is 1.5 times the carrier amplitude. Therefore, the peak amplitude of the modulated signal is 1.5 * 10^(-3).

Hence, the signal power of the modulated signal s(t) is:

Ps = (1/2) * (1/3) * (1.5 * 10^(-3))^2

= (1/2) * (1/3) * (2.25 * 10^(-6))

= 3.75 * 10^(-9)

The noise power spectral density No = 10^(-12), which represents the power per unit bandwidth.

Since the bandwidth of the message signal is 1000 Hz, the noise power over the bandwidth is:

Pn = No * BW = 10^(-12) * 1000 = 10^(-9)

The demodulator output SNR is given by:

SNR = Ps / Pn = (3.75 * 10^(-9)) / (10^(-9)) = 3.75

Therefore, the demodulator output SNR for AM modulation with 50% modulation is 3.75.

(2) DSB-SC modulation:

In DSB-SC modulation, the modulated signal is given by:

s(t) = m(t) * c(t)

where m(t) is the message signal and c(t) is the carrier signal.

Using the same message signal and carrier signal as in the previous case, we can calculate the demodulator output SNR.

The signal power of the modulated signal s(t) is given by:Ps = E[s^2(t)]

The message signal m(t) has power Pm = 1/3 (as calculated before).

The carrier signal c(t) = 10^(-3) * cos(2πfet), so its power is:

[tex]Pc = E[c^2(t)] = (10^{-3})^2 = 10^{-6}[/tex]

Hence, the signal power of the modulated signal s(t) is:

[tex]P_s = P_m \times P_c = \frac{1}{3} \times 10^{-6} = 10^{-6} \div 3[/tex]

The noise power spectral density No = 10^(-12), which represents the power per unit bandwidth.

Since the bandwidth of the message signal is 1000 Hz, the noise power over the bandwidth is:

Pn = No * BW = 10^(-12) * 1000 = 1[tex]10^{-9[/tex]

The demodulator output SNR is given by:

[tex]SNR = \frac{P_s}{P_n} = \frac{10^{-6}}{3} \div \frac{10^{-9}}{1} = \frac{10^{-6}}{3 \times 10^{-9}} = \frac{10^3}{3}[/tex]

Therefore, the demodulator output SNR for DSB-SC modulation is ([tex]10^3[/tex] / 3).

To know more about demodulator visit:

https://brainly.com/question/29909958

#SPJ11

The dynamics of a process are described by the following state-space model: *1(t) = 68x1(t) - 45.22(t) + 14u(t) 02(t) = 109x1(t) – 72x2(t) + 24u(t) y(t) = -3x1(t) + 2x2(t) - Find the parameters a, b, c, d e Z of the transfer function: H(8) Y(8) U(8) as+b = s? +cs+d a: b: c: C d:

Answers

The dynamics of a process are described by the following state-space model:

[tex]$$\begin{aligned} \dot x_1(t) &= 68x_1(t) - 45.22(t) + 14u(t) \\ \dot x_2(t) &= 109x_1(t) - 72x_2(t) + 24u(t) \\ y(t) &= -3x_1(t) + 2x_2(t) \end{aligned}$$[/tex]

Find the parameters a, b, c, d ∈ Z of the transfer function: H(s) = Y(s) / U(s)The transfer function can be obtained as follows:

[tex]$$\begin{aligned} \dot X(s) &= A X(s) + B U(s) \\ Y(s) &= C X(s) + D U(s) \end{aligned}$$where$$[/tex]\[tex]begin{aligned} X(s) &= \begin{bmatrix} x_1(s) \\ x_2(s) \end{bmatrix}, \qquad A = \begin{bmatrix} 68 & 0 \\ 109 & -72 \end{bmatrix}, \qquad B = \begin{bmatrix} 14 \\ 24 \end{bmatrix} \\ Y(s) &= \begin{bmatrix} y(s) \end{bmatrix}, \qquad C = \begin{bmatrix} -3 & 2 \end{bmatrix}, \qquad D = \begin{bmatrix} 0 \end{bmatrix} \end{aligned}$$[/tex]

The transfer function can be expressed as:[tex]$$H(s) = \frac{Y(s)}{U(s)} = C(sI - A)^{-1} B$$Substituting the values:$$H(s) = \frac{Y(s)}{U(s)} = \frac{\begin{bmatrix} -3 & 2 \end{bmatrix}}{s \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 68 & 0 \\ 109 & -72 \end{bmatrix}} \begin{bmatrix} 14 \\ 24 \end{bmatrix}$$$$[/tex]

[tex]\begin{aligned} H(s) &= \frac{\begin{bmatrix} -3 & 2 \end{bmatrix} \begin{bmatrix} -72 & 0 \\ -109 & s+68 \end{bmatrix} \begin{bmatrix} 14 \\ 24 \end{bmatrix}}{(s+68)(s+72) - 109 \cdot 68} \\ &= \frac{2s + 1732}{s^2 + 140s + 5044} \end{aligned}$$[/tex]

Comparing the above equation with the general form of transfer function:

[tex]$H(s)= \frac{bs+d}{s^2+as+c}$[/tex]

We can get the following parameters:

[tex]$$\begin{aligned} a &= 140, \qquad b = 2 \\ c &= 5044, \qquad d = 1732 \end{aligned}$$[/tex]

Therefore, the parameters a, b, c, and d of the transfer function H(s) are:a = 140, b = 2, c = 5044, and d = 1732.

to know more about dynamics here;

brainly.com/question/32331641

#SPJ11

Part 1: [5 marks] Declare a function with two input parameters: "a" and "b" both integer values. The function returns a random integer in the range [a, b]. Part 2: [20 marks] Use the function you defined in Part 1 to write a program for "Guees the Number" game. In this game the user is to guess a random number in the range [1, 100] generated by the computer. Here are the steps that the program takes: 1. The program calls the function declared in Part 1 to generate a random integer in the range [1, 100]. 2. The program then asks the user to guess the number generated in the previous step. 3. If the user enters the correct number, the program alerts "You won!" and terminates. 4. If the number entered by the user is not in the range [1. 100], the program alerts an error message and goes to Step 2. 5. If the number entered by the user is less than the random number generated in Step 1, the program displays "Enter a larger value" and goes to Step 2. 6. If the number entered by the user is greater than the random number generated in Step 1, the program displays "Enter a smaller value" and goes to Step 2. The program continues until the user guesses the number correctly. Part 3: [10 marks] Rewrite the program written in Part 2 to make the program stop after 20 wrong guesses. If the user enters 20 wrong guesses, the program alerts the message "You lost!" and terminales.

Answers

Part 1: Declaring a function with two input parameters Here is the function that takes two integer input parameters a and b and returns a random integer value between a and b in Python:```pythonimport randomdef get_random(a, b): return random.randint(a, b)```

Part 2: Writing a program for "Guess the Number" game The steps required to write the game of "Guess the Number" are outlined below:```pythonimport random def play_game(): # Step 1rand_num = get_random(1, 100)num_guesses = 0while True: # Step 2guess = int(input("Enter your guess (between 1 and 100): "))num_guesses += 1if guess == rand_num: # Step 3print("You won!")returnelif guess < 1 or guess > 100: # Step 4print("Error: Number should be between 1 and 100.")elif guess < rand_num: # Step 5print("Enter a larger value.")else: # Step 6print("Enter a smaller value.")if num_guesses == 20: # to implement part 3print("You lost!")return```The code for the "Guess the Number" game has been defined above. To execute the code, use the following command:```pythonplay_game()```

Part 3: Modifying the program to stop after 20 wrong guessesThe code for the "Guess the Number" game has been updated to terminate after the user has made 20 incorrect guesses.`` `python import randomdef play_game(): # Step 1rand_num = get_random(1, 100)num_guesses = 0while True: # Step 2guess = int(input("Enter your guess (between 1 and 100): "))num_guesses += 1if guess == rand_num: # Step 3print("You won!")returnelif guess < 1 or guess > 100: # Step 4print("Error: Number should be between 1 and 100.")elif guess < rand_num: # Step 5print("Enter a larger value.")else: # Step 6print("Enter a smaller value.")if num_guesses == 20: # to implement part 3print("You lost!")return```

Know more about  parameters  here:

https://brainly.com/question/29911057

#SPJ11

4. Find the energy of the following signals, using Parseval's theorem. (a) X(t) = exp[-2t] ut) (b) x(t) = u(t) - ut - 5) (c) X(t) = 40 (d) x(t) sin(at) TEL

Answers

(a) The energy of the signal X(t) = exp[-2t] * u(t) can be calculated using Parseval's theorem.

Parseval's theorem states that the energy of a continuous-time signal x(t) can be calculated by integrating the squared magnitude of its Fourier transform X(f) over all frequencies. In this case, we need to find the energy of X(t), so we will calculate the energy of its Fourier transform X(f).

The Fourier transform of X(t) is given by X(f) = 1 / (2πj + 2πf), where j is the imaginary unit. To calculate the energy, we need to square the magnitude of X(f) and integrate it over all frequencies:

Energy = ∫(|X(f)|^2) df

Substituting the expression for X(f) and evaluating the integral, we get:

Energy = ∫(|1 / (2πj + 2πf)|^2) df

      = ∫(1 / (4π^2 - 4πjf - 4πjf + 4π^2f^2)) df

      = ∫(1 / (8π^2f^2 - 8πjf)) df

      = ∫(1 / 8π^2f^2) df

      = [1 / (8π^2)] ∫(f^(-2)) df

      = [1 / (8π^2)] (-f^(-1))

      = -1 / (8π^2f) + C

Since we are integrating over all frequencies, the integration limits are -∞ to ∞. Taking the limits, we get:

Energy = lim┬(a→-∞)⁡〖(-1 / (8π^2a) + C) - lim┬(b→∞)⁡〖(-1 / (8π^2b) + C) 〗

      = (1 / (8π^2a)) - (1 / (8π^2b))

The energy of the signal X(t) = exp[-2t] * u(t) is given by (1 / (8π^2a)) - (1 / (8π^2b)).

To know more about signal, visit

https://brainly.com/question/29908129

#SPJ11

A balanced three phase load of 25MVA, P.F-0.8 lagging, 50Hz. is supplied by a 250km transmission line. the line specifications are: Lline length: 250km, r=0.112/km, the line diameter is 1.6cm and the line conductors are spaced 3m. a) find the line inductance and capacitance and draw the line. equivalent circuit of the b) if the load voltage is 132kV, find the sending voltage.. c) what will be the receiving-end voltage when the line is not loaded.

Answers

Voltage is typically measured in volts (V) and represents the potential energy per unit charge. There will be no voltage drop due to line impedance. Hence, the receiving-end voltage will be the same as the sending voltage.

Voltage, also known as electric potential difference, is a fundamental concept in physics and electrical engineering. It refers to the difference in electric potential between two points in an electrical circuit or system.

Voltage is a crucial parameter in electrical systems as it determines the flow of electric current and the behavior of various electrical components. It is commonly used in power distribution, electronics, and electrical measurements. Different devices and components require specific voltage levels to operate correctly and safely.

To find the line inductance and capacitance, we can use the following formulas:

Inductance (L) = 2πfL

Capacitance (C) = (2πfC)⁻¹

Where:

f is the frequency (50Hz in this case)

L is the inductance per unit length

C is the capacitance per unit length

a) Finding the line inductance and capacitance:

Given:

Line length (l) = 250 km

Resistance per unit length (r) = 0.112 Ω/km

Line diameter = 1.6 cm

Conductor spacing = 3 m

First, let's calculate the inductance (L):

L = 2πfL

L = 2π * 50 * L

To find L, we need to calculate the inductance per unit length (L'):

L' = 2.303 log(2l/d)

Where:

l is the distance between conductors (3 m in this case)

d is the diameter of the conductor (1.6 cm or 0.016 m in this case)

L' = 2.303 log(2 * 250 / 0.016)

Next, let's calculate the capacitance (C):

C = (2πfC)^-1

C = 1 / (2π * 50 * C)

To find C, we need to calculate the capacitance per unit length (C'):

C' = πε / log(d/ρ)

Where:

ε is the permittivity of free space (8.854 x 10^-12 F/m)

d is the diameter of the conductor (1.6 cm or 0.016 m in this case)

ρ is the resistivity of the conductor material (typically given in Ω.m)

Assuming a resistivity of ρ = 0.0175 Ω.m (for aluminum conductors):

C' = π * 8.854 x 10^-12 / log(0.016 / 0.0175)

Now we have the values of L' and C', and we can substitute them back into the equations to find L and C.

b) Finding the sending voltage:

The sending voltage can be found using the formula:

Sending Voltage = Load Voltage + (I * Z)

Where:

Load Voltage is the given load voltage (132 kV in this case)

I is the line current

Z is the impedance of the transmission line

To find the line current (I), we can use the formula:

I = S / (√3 * V * PF)

Where:

S is the apparent power (25 MVA in this case)

V is the load voltage (132 kV in this case)

PF is the power factor (0.8 lagging in this case)

Once we have the line current, we can calculate the impedance (Z) using the formula:

Z = R + jωL

Where:

R is the resistance per unit length (0.112 Ω/km in this case)

ω is the angular frequency (2πf)

L is the inductance per unit length (calculated in part a)

Finally, substitute the calculated values of I and Z into the sending voltage formula to find the sending voltage.

c) Finding the receiving-end voltage when the line is not loaded:

When the line is not loaded, there is no current flowing through it. Therefore, there will be no voltage drop due to line impedance. Hence, the receiving-end voltage will be the same as the sending voltage.

For more details regarding voltage, visit:

https://brainly.com/question/33221037

#SPJ4

Trace the output of the following code? int n = 10; while (n > 0) { n/= 2; cout << n * n << " ";
}

Answers

The code outputs the values 25, 4, and 1.

The code initializes the variable n to 10. It enters a while loop that continues as long as n is greater than 0. Within the loop, n is divided by 2 (n /= 2), and the square of the new value of n is printed (n * n).

A step-by-step breakdown of the loop iterations:

1st iteration: n = 10, n /= 2 => n = 5, n * n = 25 (printed)

2nd iteration: n = 5, n /= 2 => n = 2, n * n = 4 (printed)

3rd iteration: n = 2, n /= 2 => n = 1, n * n = 1 (printed)

4th iteration: n = 1, n /= 2 => n = 0 (loop condition fails, exits the loop)

Therefore, the output of the code will be 25 4 1.

Learn more about while loop at:

brainly.com/question/30062683

#SPJ11

All branch circuits recognized by the NEC shall be rated in accordance with the maximum permitted ampere rating of the Select one: Oa. conductor Ob. wire size OC. OCD Od. load center

Answers

According to the National Electrical Code (NEC), branch circuits must be rated based on the maximum permitted ampere rating of the load center.

The NEC is a set of electrical standards and guidelines established by the National Fire Protection Association (NFPA) in the United States. It provides regulations for safe electrical installations. In accordance with the NEC, branch circuits, which are the individual circuits that supply power to specific areas or devices in a building, must be rated based on the maximum ampere rating of the load center.

The load center, also known as the electrical panel or distribution panel, is the central point where the electrical power enters the building and is distributed to various circuits. The load center has a maximum ampere rating, which determines the total electrical load that it can safely handle. This rating is typically indicated on the load center itself.

To ensure the safety and proper functioning of the electrical system, the ampere rating of the branch circuits should not exceed the maximum permitted ampere rating of the load center. This ensures that the load center is not overloaded, which could lead to overheating, electrical faults, or even fire hazards. Therefore, when designing or installing branch circuits, it is essential to consider the maximum permitted ampere rating of the load center to ensure compliance with the NEC and maintain electrical safety.

learn more about National Electrical Code (NEC) here:

https://brainly.com/question/32316986

#SPJ11

5. For the sequence defined by the recurrence relation ak = 4ak-1 + 6, for each integer k ≥ 1, where ao = 2 a) Use the process of Iteration to find an Explicit formula for the sequence. Simplify. (8) b) Use the Principle of Mathematical Induction to verify the correctness of the formula you found in part 5a. (8)

Answers

Answer:

To find an explicit formula for the sequence defined by the recurrence relation ak = 4ak-1 + 6, for each integer k ≥ 1, where ao = 2, we can use the process of iteration.

Starting with a1 = 2, we can compute the first few terms of the sequence as follows: a1 = 2 a2 = 4a1 + 6 = 14 a3 = 4a2 + 6 = 58 a4 = 4a3 + 6 = 234 a5 = 4a4 + 6 = 938

Looking at these terms, we can make a conjecture for the explicit formula: an = 2 + 4 + 4^2 + ... + 4^(n-2) + 4^(n-1)

We can prove this formula using mathematical induction.

Base Case: For the base case, we let n = 1. Then the formula gives: a1 = 2 = 2 + 4^0 = 2 + 1

This is true, so the base case holds.

Induction Hypothesis: Assume that the formula holds for some arbitrary value k, i.e., ak = 2 + 4 + 4^2 + ... + 4^(k-2) + 4^(k-1)

Induction Step: We want to show that the formula also holds for k+1. That is, ak+1 = 2 + 4 + 4^2 + ... + 4^(k-2) + 4^(k-1) + 4^k

Using the recurrence relation, we have: ak+1 = 4ak + 6 = 4(2 + 4 + 4^2 + ... + 4^(k-2) + 4^(k-1)) + 6 = 2(4^k - 1) + 6 + 4^(k+1) = 2(4^(k+1) - 1) + 2(4 - 1) = 2 + 4 + 4^2 + ... + 4^(k-1) + 4^k + 4^(k+1)

This is exactly the conjectured formula for ak+1. Therefore, by mathematical induction, the formula holds for all positive integers n.

So the explicit formula for the sequence

Explanation:

Find the state-space representation of the system given the transfer function described below: s + 10 T(s) = s3 + 12s2 +9s +8 (10 marks)

Answers

The state-space representation of the system is:

x' = Ax + Bu

y = Cx + Du

In the given transfer function, we have:

s + 10 T(s) = s^3 + 12s^2 + 9s + 8

To convert this transfer function into state-space representation, we need to find the matrices A, B, C, and D.

Step 1: Find the coefficients of the transfer function

By comparing the coefficients of the transfer function equation, we can determine the coefficients of the state-space representation. In this case, we have:

s^3 + 12s^2 + 9s + 8 = (s - λ1)(s - λ2)(s - λ3)

Step 2: Determine the A matrix

The A matrix is a square matrix of size n x n, where n is the order of the transfer function. In this case, n = 3 since we have a third-order transfer function. The A matrix is given by:

A = | 0   1   0 |

      | 0   0   1 |

      | -λ1  -λ2  -λ3 |

where λ1, λ2, and λ3 are the roots of the transfer function equation.

Step 3: Determine the B, C, and D matrices

The B matrix is a matrix of size n x m, where m is the number of inputs. In this case, we have one input (T(s)), so m = 1. The B matrix is given by:

B = | 0 |

      | 0 |

      | 1 |

The C matrix is a matrix of size p x n, where p is the number of outputs. In this case, we have one output (y), so p = 1. The C matrix is given by:

C = | 1  10  0 |

The D matrix is a matrix of size p x m. Since we have only one input and one output, the D matrix is a scalar:

D = 0

By plugging in the appropriate values for the roots of the transfer function, we can determine the A matrix. The B, C, and D matrices can be directly determined from the number of inputs and outputs.

Learn more about state-space representation

https://brainly.com/question/28180105

#SPJ11

It is required to design a first-order digital IIR high-pass filter from a suitable Butterworth analogue filter. Sampling frequency is 150 Hz and cut-off frequency is 30 Hz. Use bilinear transformation to design the required high-pass filter (note: you must prewarp the frequencies). Obtain filter transfer function in the form: H(2) ao+ajz -1 1+612-1 In the box below, put the numerical value of bl.

Answers

The correct answer is the value of bl is 1.256.

Given, Sampling frequency (Fs) = 150 HzCut-off frequency (F) = 30 Hz

We have to design a first-order digital IIR high-pass filter from a suitable Butterworth analogue filter and use bilinear transformation to design the required high-pass filter (note: we must pre-warp the frequencies).

The transfer function of the Butterworth filter for a high pass filter is given as: H(S) = S / (S + ωc)where ωc is the cutoff frequency of the filter. We need to convert this analogue filter transfer function to digital using the bilinear transformation.

The bilinear transformation is given by: 2 / T * (1-z^-1) / (1+z^-1) where T is the sampling time.T = 1 / Fs = 1 / 150 = 0.00667 second (approx)

Let's first pre-warp the frequency: F1 = 2/T * tan (ωcT/2) = 2 / 0.00667 * tan (30 * 0.00667 / 2) = 0.347Bl = tan (πF1) / tan (πF1/2) = 1.256

So, the value of bl is 1.256.

know more about Butterworth filter

https://brainly.com/question/33178679

#SPJ11

19 A function is called if it calls _____ itself. a. directly iterative b. indirectly iterative c. indirectly recursive d. directly recursive 20. A recursive function in which the last statement executed is the recursive call is called a(n) _____ recursive function. a. direct b. tail c. indefinite d. indirect

Answers

19. A function is called directly recursive if it calls itself directly. Therefore, the answer is d. directly recursive.

20. A recursive function in which the last statement executed is the recursive call is called a tail recursive function. Therefore, the answer is b. tail.

Recursion is a technique in computer programming and mathematics that involves defining a problem in terms of itself. A recursive function is a function that calls itself, whereas an iterative function is a function that uses loops to perform repetitive tasks.

Here are some differences between recursive functions and iterative functions:

Recursive Functions:

1. A recursive function is typically shorter and more concise than an iterative function.2. Recursion can be more readable than iteration in some cases, particularly for problems that involve hierarchical structures.3. Recursive functions can be more memory-intensive than iterative functions because each recursive call creates a new stack frame on the call stack.4. Recursive functions are typically used for problems that can be divided into smaller subproblems that can be solved recursively.5. Recursive functions can be less efficient than iterative functions.

Iterative Functions:

1. Iterative functions are typically longer and more verbose than recursive functions.2. Iteration can be more efficient than recursion in some cases, particularly for problems that involve large data sets.3. Iterative functions can be less readable than recursive functions in some cases.4. Iterative functions are typically used for problems that can be solved using loops or other iterative constructs.5. Iterative functions can be more memory-efficient than recursive functions because they do not create new stack frames on the call stack.

Learn more about Recursive Functions:

https://brainly.com/question/31313045

#SPJ11

4. Construct a transition diagram for the NFA for the following language: A language for Σ = {p, q, r}, that accepts strings of length not more than 4 and that end with "rq".
5. Construct the transition table for the NFA given in question 4.
6. Convert the NFA in Question 4 to DFA by showing all the steps:

Answers

Transition diagram for the NFA:

->(q0)--p-->(q1)--{p,q,r}-->(q2)--{p,q,r}-->(q3)--r-->(q4)--q-->(q5)

Transition table for the NFA:

State p q r

q0 {q1} {} {}

q1 {q2} {} {}

q2 {q3} {} {}

q3 {} {} {q4}

q4 {} {q5} {}

q5 {} {} {}

The NFA (Non-deterministic Finite Automaton) for the language that accepts strings of length not more than 4 and ends with "rq" can be represented using a transition diagram.

The transition table can be derived from the transition diagram, and the NFA can be converted to a DFA (Deterministic Finite Automaton) by performing the subset construction algorithm.

Transition Diagram:

The transition diagram for the given language can be constructed as follows:

               p     q     r

→ q₀ --r--> q₁ --r--> q₂ --q--> q₃

  |______p, q_____|

In the above diagram, q₀ is the initial state and q₃ is the final/accepting state. The transitions are labeled with the input symbols p, q, and r. The transition from q₁ to q₂ represents the repeated transition of r. The self-loop from q₁ to q₁ represents the optional presence of p or q.

Transition Table:

The transition table can be derived from the transition diagram as follows:

  |  p  |  q  |  r  |

–––––––––––––––––––––

→q₀| q₁  | q₁  |      |

–––––––––––––––––––––

q₁| q₁  | q₁, q₂| q₂, q₃|

–––––––––––––––––––––

q₂|      |      | q₃   |

–––––––––––––––––––––

* q₃|      |      |      |

–––––––––––––––––––––

Conversion to DFA:

To convert the NFA to a DFA, we can apply the subset construction algorithm. Starting with the initial state of the NFA, we create new states in the DFA based on the transitions from the existing states. This process continues until no new states can be created. The resulting DFA will have a transition table similar to the one above but with deterministic transitions.

Performing the subset construction algorithm in detail is beyond the scope of this response, but it involves creating subsets of states based on the transitions from the NFA. Each subset represents a state in the DFA, and the transitions are determined by the corresponding subsets.

By following the subset construction algorithm, you can convert the given NFA to a DFA with the appropriate transition table.

Learn more about Deterministic Finite Automaton  here :

https://brainly.com/question/32072163

#SPJ11

A 400-V, 3- ∅ supply is connected across a balanced load of three impedances each consisting of a 32−Ω resistance and 24−Ω inductive reactance in series. Determine the current drawn from the power supply, if the three impedances and source are: a- Y-connected, and b- Δ-connected. Problem 2: A balanced Δ-connected load having an impedance 20 -j15 Ω is connected to a Δ-connected, positive-sequence generator having V ab

=330/0 ∘
V. Calculate the phase currents of the load and the line currents. Problem 3: A balanced positive sequence Y-connected source with V an

=100/10 ∘
V is connected to a Δ connected balanced load with impedance 8+j4Ω per phase. Calculate the phase currents of the load and the line currents.

Answers

Line current, IL = 7.16 ∠ -18.43o amps

Problem 1a: Y-Connected LoadIn a balanced Y-connected circuit, the line and phase voltages are equal and the phase current is equal to the line current divided by the square root of 3.The impedances are series impedances, therefore, the current in the circuit will be the same through all impedances. Use Ohm's Law to find the current in one branch and multiply by 3 to obtain the total current. The current in one phase can be determined by the following formula;Impedance = Resistance + jX_LPhase Current, I = Phase Voltage / ImpedanceNow, for a Y-connected circuit,Phase voltage, Vph = Line Voltage / √3

Therefore,Total Current = Phase Current × 3Hence,Total Current = 10.1AProblem 1b: Δ-Connected LoadIn a balanced Δ-connected circuit, the line current and the phase current are equal. The phase voltage is line voltage divided by the square root of 3. The same current flows through each phase impedance and the total current is the sum of the phase currents.Use Ohm's Law to determine the current in one phase and multiply it by 3 to get the total current, which is the same as the line current.

The following formula is used to calculate the current;Impedance = Resistance + jX_LPhase Current, I = Phase Voltage / ImpedanceIn a Δ-connected circuit,Phase Voltage = Line VoltageNow, the phase voltage,Phase Voltage, Vph = Line Voltage / √3Therefore,Total Current = Phase Current × 3Hence,Total Current = 5.86AProblem 2: Balanced Δ-Connected LoadThe voltage across the line is given by:Vab = 330/0o volts.ZAB = 20 - j15 ohmsTherefore, the phase voltage of the load is:Vph = VAB / √3Vph = 330 / √3 ∠ 0o / √3Vph = 190.6 ∠ -30o voltsFor balanced Δ-connected loads, the line current and the phase current are the same.

The phase current is calculated as follows:Impedance, Z = 20 - j15 ΩPhase current, Iph = Vph / ZTherefore,Phase current, Iph = 6.39 ∠ 36.87o ampsThe line current is the same as the phase current for a balanced Δ-connected load.Therefore,Line current, IL = 6.39 ∠ 36.87o ampsProblem 3: Balanced Positive Sequence Y-Connected Source with Δ-Connected LoadThe voltage across the line is given by:VAN = 100 / 10o volts.The impedance of the load is given as 8 + j4 Ω per phase. This implies that the load has an impedance of 24 + j12 Ω across the lines.ZLN = 24 + j12 Ω

Therefore, the phase voltage of the load is:Vph = VAN / √3Vph = 100 / √3 ∠ 10o / √3Vph = 57.74 ∠ -10o voltsFor balanced Y-connected loads, the phase current and the line current are not the same.The phase current is calculated as follows:Impedance, Z = 8 + j4 ΩPhase current, Iph = Vph / ZTherefore,Phase current, Iph = 4.13 ∠ -18.43o ampsThe phase current in each line of the load is different.The line current is calculated as follows:IL = √3 IphTherefore,Line current, IL = 7.16 ∠ -18.43o amps

Learn more about Circuit here,Activity 1. Circuit Designer

DIRECTIONS: Draw the corresponding circuit diagram and symbols using the given

number of ...

https://brainly.com/question/27084657

#SPJ11

Given the measured phase voltage back emf waveform, shown on Figure Q3a, for a star connected 4 pole Permanent Magnet AC motor operating at 12 kW output power determine the following: (i) The required rms motor line current and Phase Advance (Gamma) controlled by the inverter. [2] (ii) The Back EMF Constant (K e

) in SI Units. [2] (iii) The motor speed (rpm) and torque (Nm) at this operating point. [2] rigure บsa

Answers

The required rms motor line current and Phase Advance (Gamma) controlled by the inverter. For a star-connected 4-pole permanent magnet AC motor operating at 12 kW output power.

The rms motor line current and Phase Advance controlled by the inverter are required. Given that the phase voltage back emf waveform is shown on Figure Q3a. The required rms motor line current: RMS Motor Line Current = P/(√3 × V × PF) = (12 × 103)/(√3 × 230 × 0.85) = 35.1 A.

The required Phase Advance (Gamma) controlled by the inverter can be determined using the below formula:Gamma = cos⁻¹[(Pout)/3VI] + cos⁻¹(PF) = cos⁻¹[(12000)/ (3 × 230 × 35.1)] + cos⁻¹(0.85) = 19.7 °(ii) The Back EMF Constant (Ke) in SI Units.The motor torque is given as the difference between the torque developed by the motor and the torque opposing the motor.

To know more about inverter visit:

brainly.com/question/31116922

#SPJ11

PROBLEM 4 In a attempt to save money to compensate for the recent budget shortfalls at UNR, it has been determined that the steam used to heat the engineering computer labs will be shut- down at 6:00 P.M. and turned back on at 6:00 A.M., much to the disappointment of a busy thermodynamics that have been working hard on outrageously long thermo homework due the following day. The circulation fans will stay on, keeping the entire building at approxi- mately the same temperature at a given time. Well, things are not going as quickly as you might have hoped for and it is getting cold in the computer lab. You look at your watch; its is already 10:00 P.M. and the temperature has already fallen halfway from the comfortable 22°C it was maintained at during the day to the 2°C of the outside temperature (i.e., the temperature is 12°C in the lab at 10:00 P.M.). You already realized that you will probably be there all night trying to finish the darn thermo homework and you need to estimate if you are going to freeze in the lab. You decide to estimate what the temperature will be at 6:00 A.M. You may assume the heat transfer to the outside of the building is governed following expression: Q=h(T - Tout), where h is a constant and Tout is the temperature outside the building. (a) Plot your estimate of the temperature as a function of time. Explain the plot and findings. (b) Calculate the temperature at 6:00 A.M.

Answers

(a) The temperature decreases exponentially with time and will never fall below the outside temperature. (b) The estimated temperature at 6:00 A.M. is 5.48°C.

(a) The rate of heat transfer to the outside can be given by

Q=h(T - Tout)

where h is a constant and Tout is the temperature outside. The differential equation describing the rate of change of temperature in the room can be written as

dQ/dt = mc dT/dt

where m is the mass of air in the room and c is the specific heat of air. So, we have:

mc dT/dt = -h(T - Tout)mc dT/(T - Tout) = -h dt

Integrating both sides of the equation gives

ln (T - Tout) = -h t/mc + C, where C is the constant of integration.

where T0 is the initial temperature of the room.

At t = 0, T = T0.

So, C = ln (T0 - Tout) and T = Tout + (T0 - Tout) e(-h t/mc)

The temperature is a function of time and can be plotted to show how the temperature decreases with time. The plot should show that the temperature decreases exponentially with time. It should also show that the temperature will never fall below the outside temperature. This is because as the temperature in the room approaches the outside temperature, the rate of heat transfer decreases, which slows the rate of cooling.

(b) We are given that the temperature at 10:00 P.M. is 12°C. The outside temperature is 2°C. We are also given that the temperature at 6:00 A.M. needs to be estimated. We can use the equation:

T = Tout + (T0 - Tout)

to calculate the temperature at 6:00 A.M. We are given that the heat is turned off at 6:00 P.M. and turned back on at 6:00 A.M. So, the time for which the heat is off is 12 hours. So, we have:

T = 2 + (12 - 2)

Using the given temperature at 10:00 P.M. and the outside temperature, we can find h:

T - Tout = Q/h(12:00 A.M. to 6:00 A.M.)

= mc (T0 - Tout)T - 2

= Q/h(12:00 A.M. to 6:00 A.M.)

= mc (T0 - 2)12 - 2 = (T0 - 2) e(-h 12/mc)ln 5

= -h 12/mc

So,h = -mc ln 5/12

Substituting this value of h in the earlier equation gives:

T = 2 + (12 - 2) e(-mc ln 5/12 mc)T

= 2 + 10 e(-ln 5/12)T

= 2 + 10(ln 5/12)T

= 2 + 3.48T

= 5.48°C

So, the estimated temperature at 6:00 A.M. is 5.48°C. Answer: (a) The temperature decreases exponentially with time and will never fall below the outside temperature. (b) The estimated temperature at 6:00 A.M. is 5.48°C.

Learn more about cooling :

https://brainly.com/question/31555490

#SPJ11

Let the stator currents of a three-phase machine with N turns per phase be given by: ia = Im sin(wt), İb = Im sin(wt - 2π/3), İc = Im sin(wt - 4T /3) Give the expressions for individual magnetomotive forces of the three phases of the three-phase system and illustrate them in the cross-section of the machine. Describe their nature. Derive an expression for the resulting magnetomotive force of a three-phase system and describe its nature. Using black box representation, illustrate the machine's inputs/outputs (doors), outputs (windows) and internal energy storages for motoring operation. For part c), give the power balance equations for this representation. [7 marks] [8 marks] [6 marks] [4 marks]

Answers

a) Expressions for individual magnetomotive forces of the three phases of the three-phase system:Given: ia = Im sin(wt), İb = Im sin(wt - 2π/3), İc = Im sin(wt - 4T /3) Magnetomotive force (MMF) = Number of turns x currentHere,

A number of turns per phase = N, and currents are given as ia = Im sin(wt), İb = Im sin(wt - 2π/3), İc = Im sin(wt - 4T /3)Therefore, Individual MMF for phase a = N x ia = N x Im sin(wt)Individual MMF for phase b = N x İb = N x Im sin(wt - 2π/3)Individual MMF for phase c = N x İc = N x Im sin(wt - 4T /3)

Illustration in the cross-section of the machine and nature:

Individual MMFs are the phasor sums of the three-phase MMFs and they can be represented as the sides of an equilateral triangle with a magnitude of √3 times the amplitude of individual MMFs.The nature of these MMFs is time-varying and rotating at a synchronous speed with respect to the stator rotating magnetic field.

b) Derivation of expression for the resulting magnetomotive force of a three-phase system and description of its nature: The resulting magnetomotive force can be expressed as the vector sum of individual MMFs. Since these are displaced by 120°, they have a vectorial sum of zero. Therefore, we can represent it as a straight horizontal line in the phasor diagram.

The amplitude of the straight line represents the magnitude of the resultant MMF which is equal to √3 times the amplitude of individual MMFs.The nature of this MMF is constant and does not vary with time.

c) Illustration of machine's inputs/outputs (doors), outputs (windows), and internal energy storages for motoring operation: Black box representation of the machine for motoring operation is as follows: Inputs/doors to the machine are the three-phase ac supply. Internal energy storages are the stator magnetic field and the rotating magnetic field.Outputs/windows are the electromagnetic torque and the generated power.

Power balance equations for this representation: Pinput = Pe + Pfriction + PoutputWhere,Pinput = 3 x VL x IL x cos(ϕ)Pe = 3 x Rotor Copper loss + 3 x Stator Copper loss friction = frictional and windage lossPoutput = Shaft output power generated by the machine.

to know more about magnetomotive forces here;

brainly.com/question/29167719

#SPJ11

Swati has a voltage supply that has the following start-up characteristic when it is turned on: V(t) (V)= a. What is the current through a 1 mH inductor that is connected to the supply for t>0?

Answers

The current through a 1 mH inductor connected to the voltage supply with a start-up characteristic of V(t) (V) = a for t > 0 is zero.

When a voltage is applied across an inductor, the current through the inductor is determined by the rate of change of the applied voltage. In this case, the voltage supply has a start-up characteristic given by V(t) = a.

Since the voltage supply is a constant value of 'a', there is no change in voltage with respect to time. Therefore, the rate of change of voltage (∆V/∆t) is zero.

According to the fundamental relationship for inductors, the current through an inductor (I) is given by the equation:

V = L * (dI/dt)

Where:

V is the voltage across the inductor,

L is the inductance of the inductor, and

(dI/dt) is the rate of change of current.

Since the voltage supply has no rate of change (∆V/∆t = 0), the current through the inductor will also have no rate of change (∆I/∆t = 0). Therefore, the current through the inductor remains constant at zero.

The current through the 1 mH inductor connected to the voltage supply with a start-up characteristic of V(t) = a for t > 0 is zero. This is because the voltage supply is constant, resulting in no rate of change of voltage and consequently no rate of change of current.

To know more about current, visit

https://brainly.com/question/31947974

#SPJ11

A 69-KV, three-phase short transmission line is 16 km long. The line has a per phase series impedance of 0.125+j 0.4375 Q2 per km. Determine the sending end voltage, voltage regulation. the sending end power, and the transmission efficiency when the line delivers 70 MVA, 0.8 lagging power factor at 64 kV.

Answers

The efficiency of the line is 110%, and the voltage regulation is 9.7%.Note: The efficiency of a transmission line can never be more than 100%. There may be some errors in the given data.

Length of line kmPer phase series impedance  Sending end voltage Power factor  lagging Efficiency (η) = We need to determine: Voltage regulation Sending end power  km Total impedance of the transmission line, ZT Sending end voltage A The sending end voltage,

Transmission efficiency  Voltage regulation Therefore, the sending end voltage is the sending end power is kW,

To know more about efficiency visit:

https://brainly.com/question/30861596

#SPJ11

Problem 3 a- Explain the effects of frequency on different types of losses in an electric [5 Points] transformer. A feeder whose impedance is (0.17 +j 2.2) 2 supplies the high voltage side of a 400- MVA, 22 5kV: 24kV, 50-Hz, three-phase Y- A transformer whose single phase equivalent series reactance is 6.08 referred to its high voltage terminals. The transformer supplies a load of 375 MVA at 0.89 power factor leading at a voltage of 24 kV (line to line) on its low voltage side. b- Find the line to line voltage at the high voltage terminals of the transformer. [10 Points] c- Find the line to line voltage at the sending end of the feeder. [10 Points]

Answers

a) The effects of frequency on different types of losses in an electric transformer: Copper losses increase, eddy current losses increase, hysteresis losses increase, and dielectric losses may increase with frequency.

b) Line-to-line voltage at the high voltage terminals of the transformer: 225 kV.

c) Line-to-line voltage at the sending end of the feeder: 224.4 kV.

a) What are the effects of frequency on different types of losses in an electric transformer?b) Find the line-to-line voltage at the high voltage terminals of the transformer. c) Find the line-to-line voltage at the sending end of the feeder.

a) The effects of frequency on different types of losses in an electric transformer are as follows:

  - Copper (I^2R) losses: Increase with frequency due to increased current.

  - Eddy current losses: Increase with frequency due to increased magnetic induction and skin effect.

  - Hysteresis losses: Increase with frequency due to increased magnetic reversal.

  - Dielectric losses: Usually negligible, but can increase with frequency due to increased capacitance and insulation losses.

b) The line-to-line voltage at the high voltage terminals of the transformer can be calculated using the voltage transformation ratio. In this case, the voltage transformation ratio is (225 kV / 24 kV) = 9.375. Therefore, the line-to-line voltage at the high voltage terminals is 9.375 times the low voltage line-to-line voltage, which is 9.375 * 24 kV = 225 kV.

c) To find the line-to-line voltage at the sending end of the feeder, we need to consider the voltage drop across the feeder impedance. Using the impedance value (0.17 + j2.2) and the load current, we can calculate the voltage drop using Ohm's law (V = IZ). The sending end voltage is the high voltage side voltage minus the voltage drop across the feeder impedance.

Learn more about frequency

brainly.com/question/29739263

#SPJ11

Explain what is meant by PARSEVAL and how precision and recall
are used by PARSEVAL to evaluate a parse tree.

Answers

Answer:

PARSEVAL is a tool used to evaluate the accuracy of a parse tree generated by a natural language parser. It measures the precision and recall of the parse tree. Precision is the proportion of nodes in the parse tree that are correctly labeled, while recall is the proportion of nodes that are correctly identified. PARSEVAL considers a node in the parse tree to be correctly labeled if it is labeled with the same part-of-speech tag as in the annotated corpus. A node is considered correctly identified if its position in the parse tree is the same as in the annotated corpus.

To calculate the precision and recall, PARSEVAL uses a weighted average of the number of correct, incorrect, and spurious nodes in the parse tree. Each node is assigned a weight based on the maximum number of times it appears in the annotated corpus. This ensures that nodes that are more important or frequent are weighted more heavily.

Finally, PARSEVAL also includes a measure of the number of crossing brackets in the parse tree, which is a count of the number of times a closing bracket is encountered before the appropriate opening bracket is encountered. This measure is used to evaluate the overall structure of the parse tree. Higher numbers of crossing brackets indicate a less accurate parse tree.

Overall, PARSEVAL provides a standardized way to evaluate the accuracy of natural language parsers and can be used to compare different parsers and parsing algorithms. It provides a quantitative measure of the precision and recall of the parse tree, as well as a measure of its overall structure.

Explanation:

Select the statements which are TRUE below. (Correct one may more than one)
1. The first and last observations are always conditionally independent of one another, given an intermediate observation.
2. The first and last observations are always conditionally independent of one another, given an intermediate hidden state.
3. The first and last hidden states are always conditionally independent, given an intermediate observation.
4. The first and last hidden states are always conditionally independent, given an intermediate hidden state.

Answers

The first and last observations are always conditionally independent of one another,by intermediate observation.The first and last hidden states are always conditionally independent,intermediate hidden state are true.

The first and last observations are always conditionally independent of one another, given an intermediate observation:

This statement is true because in a probabilistic graphical model, the observations are conditionally independent given the hidden states. Therefore, if we have an intermediate observation that is already conditioned on the hidden state, the first and last observations become conditionally independent of each other.

The first and last hidden states are always conditionally independent, given an intermediate hidden state:

This statement is also true based on the properties of hidden Markov models (HMMs). In an HMM, the hidden states form a Markov chain, where the current state depends only on the previous state. Therefore, given an intermediate hidden state, the first and last hidden states become conditionally independent of each other.

Both statements highlight the conditional independence properties within the context of probabilistic graphical models and hidden Markov models.

Learn more about observations here:

https://brainly.com/question/24889542

#SPJ11

Find if the following system: y(n) = 5[x(n)]^2 + 10x(n) 1.
Static or Dynamic 2. Causal or Non-Causal 3. Linear or Non-Linear
4. Time Variant or Time Invariant 5. Stable or Unstable

Answers

The problem involves analyzing the given system y(n) = 5[x(n)]^2 + 10x(n) for its properties: static or dynamic, causal or non-causal, linear or non-linear, time-variant or time-invariant, and stable or unstable.

The system is dynamic as its output depends on the current value of the input. It's causal since the output at any time point depends solely on the present or past inputs, not future inputs. The system is non-linear due to the square operation. It's time-invariant as there is no explicit time-dependent factor in the system equation. Stability can't be definitively determined with the provided information, but it's usually evaluated through the response of the system to bounded inputs.

Learn more about System Properties here:

https://brainly.com/question/29408341

#SPJ11

Other Questions
Incorrect Question 3 You left a bowl of refried beans in the refrigerator too long. One day your roommate opens the fridge and it smells like rotten egg (due to generated hydrogen sulfide, HS). You immediately run to the store to purchase activated charcoal to remove the odor. From a quick search online you learn that the linear partitioning coefficient is 24 m/kg. Assuming that the refrigerator volume is 0.5 m, the initial odor concentration is 2.6 ug/m, and the final concentration is 0.2 g/m, calculate the minimum mass of adsorbent (in g) you need to purchase. Enter your final answer with 2 decimal places. 20.83 0/2.5 pts A A duopoly faces a market demand of p=150Q. Firm 1 has a constant marginal cost of MC 1 =$20. Firm 2 s constant marginal cost is MC 2 =$40. Calculate the output of each firm, market output, and price if there is (a) a collusive equilibrium or (b) a Cournot equilibrium. The collusive equilibrium occurs where q 1 equals and q 2 equals (Enter numeric responses using real numbers rounded to two decimal places) Market output is The collusive equilibrium price is $ The Cournot-Nash equilibrium occurs where q 1 equals and q 2 equals Market output is Furthermore, the Cournot equilibrium price is $Previous question Choose the correct answer 1. The information signal is converted to the final signal to be transmitted by the: a. Transmitter Output block. b. Loudspeaker. c. Modulator. d. Receiver. The outlet gases to a combustion process exits at 690C and 0.94 atm. It consists of 9.63% HO(g), 6.77% CO, 14.26 % O2, and the balance is N. What is the dew point temperature of this mixture? Type your answer in C, 2 decimal places. A compound containing only C, H, and O, was extracted from the bark of the sassafras tree. The combustion of 66.1 mg produced 179 mg of CO2 and 36.7 mg of H2O. The molar mass of the compound was 162 g/mol. Determine its empirical and molecular formulas. M 5. [-/2 Points] DETAILS SERCP11 22.4.P.032. The prism in the figure below is made of glass with an index of refraction of 1.58 for blue light and 1.56 for red light. Find 8g. the angle of de white light is incident on the prism at an angle of 30.0. (Enter your answers in degrees.) HINT 30.0 188 White light COOL BB MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER ght and 1.56 for red light. Find &, the angle of deviation for red light, and 8. the angle of deviation for blue light, if 4 u Below is made of glass with an index of refraction of 1.58 for blue light and 1.56 for red light. Find & the angle of deviation for red light, and the angle of deviatio white light is incident on the prism at an angle of 30.0. (Enter your answers in degrees) HINT 30.0 White light Ba 60.0 (a) & the angle of deviation for red light (b), the angle of deviation for blue light Need Help? Raad If an 8-bit binary number is used to represent an analog value in the range from 010 to 10010, what does the binary value 010011102 represent? Warehouse management system (WMS) is essential in warehouseoperation. This is complemented by the Automated Storage andRetrieval System (ASRS) and Autonomous Mobile Robot (AMR) forklift,which can r Draw a use case model diagram for USE CASE - Employee Profile Creation Summary: As the coordinator, I want to create a profile for new employees on the Loisir Sportif CDN-NDG Portal so that they can access their employment information. - Owner: Coordinator of Loisirs Sportifs CDN-NDG - Actor: Coordinator, SAAS, Employees - Preconditions: - The coordinator must login to the system. - The coordinator must obtain the new employees' information such as name, DOB, address, phone number, e-mail, employment status, work availability and security questions) in order to create their profiles. - Postconditions: Each employee will have a profile, where they will be able to view their personal information and also access their work schedules. - Description: This use case describes how Loisirs Sportifs CDN-NDG's coordinator can create profiles for his employees on the portal so that they can view their employment information. - Normal flow of events: 1. The coordinator logs in to the Loisir Sportif CDN-NDG Portal. 2. In the "Employee" tab, the coordinator selects "New Employee". 3. The coordinator reaches the screen where he can fill the new employee's information (name, DOB, address, phone number, e-mail, employment status, work availability and security questions). 4. The coordinator clicks on "Confirm Employee Creation". 5. The system creates the account of the employee. 6. The system generates a user ID and password for the employee which is automatically sent to them by email (according to the email that was entered in step 3.) Exceptions: The new employee could decide not to access their account by simply gnoring the email. - Priority: High Category: Functional / required process Consider the beam shown in kip, w=1.9kip/ft, and point D is located just to the left of the 6-kip load. Follow the sign convention. Determine the internal normal force at section passing through point E. Express your answer to three significant figures and include the appropriate units. - Part E Determine the internal shear force at section passing through point E. Express your answer to three significant figures and include the appropriate units. Incorrect; Try Again; 2 attempts remaining Figure 1 of 1 Determine the internal moment at section passing through point E. Express your answer to three significant figures and include the appropriate units. If an air parcel contains the following, what is the mixing ratio of this parcel? Mass of dry air =2 {~kg} Mass of water vapor =10 {~g} A 11 kV, 3-phase, 2000 kVA, star-connected synchronous generator with a stator resistance of 0.3 12 and a reactance of 5 12 per phase delivers full-load current at 0.8 lagging power factor at rated voltage. Calculate the terminal voltage under the same excitation and with the same load current at 0.8 power factor leading (10 marks) Please provide me with an idea for my introduction aboutconstruction safety. Thank you (b) Given, L = 2 mH, C = 4 F, R = 40, R = 50 and R = 6 2 in Figure 2, determine: i. The current, IL ii. The voltage, Vc iii. The energy stored in the inductor iv. The energy stored in the capacitor (Assume that the voltage across capacitor and the current through inductor have reached their final values) IL R www 20 V R3 000 L R C Figure 2 www Design a control circuit using Arduino Uno controller to control the position, speed and direction of a unipolar stepper motor. a. Show the required components (Arduino, Driver type, Power supply) and the circuit diagram. b. Explain the circuit operation to perform the specified tasks. According to your book, the easiest technique to use for resetting styles is to use the: a.YU12: Reset CSS b.clearfix class c.overflow fix d.universal selector The intensity of a wave at a certain point is I. A second wave has 14 times the energy density and 29 times the speed of the first. What is the intensity of the second wave? A) 4.30e+011 B) 4.83e-011 C) 4.06e+021 D) 2.46e-03/ E2.07e+00/ 20. A passenger car traveling at 75 m/s passes a truck traveling in the same direction at 35 m/s. After the car passes, the horn on the truck is blown at a frequency of 240 Hz The speed of sound in air is 336 m/s A 230 V DC shunt motor has an armature current of 3 33 A at the rated voltage and at a no-load speed of 1000 rpm The field and armature resistance are 160 and 0 3 0 respectively The supply current at full load and rated voltage is 40 A Draw the equivalent circuit of the motor with the power supply Calculate the full load speed if armature reaction weakens the no load flux by 6% 31 Equivalent circuit with variables and values (4) 32 No load emf (4) 33 Full load emf (2) 34 Full load speed (3) In the following integrals, change the order of integration, sketch the corresponding regions, and evaluate the integral both ways. 1 S S [12 (a) (b) (c) (d) xy dy dx /2 ose 0 [ 1 cos dr d (x + y) dx dy [R a terms of antiderivatives). f(x, y) dx dy (express your answer in Describe the three CVD deposition regimes at different temperatures. What is the relation between deposition rate and temperature in each regime?