A circus clown wants to be shot out of a cannon, fly through the air, and pass horizontally through a window. The window is 5.0m above the height of the cannon and is in a wall 12m away from the cannon. Find the horizontal and vertical components of the initial velocity required to accomplish this. What are the magnitude and direction of this initial velocity?

Answers

Answer 1

The magnitude of the initial velocity is 18.98 m/s, and the direction of the initial velocity is 51.67°.

h = Cannon height above the window = 5m

d = Distance between the wall and the cannon = 12m

t = Time = 1s (Assumption)

g = Acceleration due to gravity = 9.8 m/s²

vx = Horizontal velocity = d / t

vy = Vertical velocity = (h + 1/2 gt²) / t

v = Magnitute of initial velocity = sqrt(vx² + vy²)

θ = Direction of the initial velocity = tan⁻¹(vy / vx)

Horizontal component: vx = d / t

vx = 12 / 1 = 12 m/s

Vertical component: vy = (h + 1/2 gt²) / t

vy = (5 + 1/2 × 9.8 × 1²) / 1 = 14.7 m/s

The magnitude of the initial velocity(v) = sqrt(vx² + vy²)

v = sqrt(12² + 14.7²)

= sqrt(144 + 216.09)

= sqrt(360.09)

= 18.98 m/s

The direction of the initial velocity is given by

θ = tan⁻¹(vy / vx)

= tan⁻¹(14.7 / 12)

= tan⁻¹(1.225)

= 51.67°

Therefore, the horizontal and vertical components of the initial velocity are 12 m/s and 14.7 m/s respectively.

The magnitude of the initial velocity is 18.98 m/s, and the direction of the initial velocity is 51.67°.

Answer 2

The magnitude of initial velocity is given by √((31.62 sinθ)² + (12)²).

The direction of initial velocity is cosθ = 12/u.

Height of window from the cannon, h = 5.0m

Distance of window from the cannon, d = 12m

Now, let's find the horizontal component of initial velocity:

We know that the clown passes horizontally through a window so horizontal distance traveled by clown = d = 12m

Initial horizontal velocity of clown, u cosθ

Distance traveled horizontally by clown, s = d = 12m

Using the formula,v² = u² + 2as

Since vertical distance traveled by clown = height of window = 5m and final vertical velocity = 0,u sinθ = ?

v² = u² + 2as

Putting the values,

0² = u² + 2(-9.8)(5)  

u = 31.62ms-¹

So, we can say that Initial vertical velocity of clown, u sinθ = 31.62 sinθ

Initial velocity of clown, u = √((31.62 sinθ)² + (12)²)

Magnitude of initial velocity of clown = √((31.62 sinθ)² + (12)²)

The clown has to pass through a horizontal distance of 12m.So, we know that

u cosθ = 12  

cosθ = 12/u

So, we can say that initial direction of clown is cosθ = 12/u

∴ The horizontal and vertical components of initial velocity are u cosθ = 12/u and u sinθ = 31.62 sinθ respectively.

The magnitude of initial velocity is given by √((31.62 sinθ)² + (12)²).

The direction of initial velocity is cosθ = 12/u.

Learn more about the horizontal component:

https://brainly.com/question/31149835

#SPJ11


Related Questions

Following are four possible transitions for a hydrogen atom. I. nᵢ = 2; nf = 5 II. nᵢ = 5; nf = 3 III. nᵢ = 7; nf = 4 IV. nᵢ = 4; nf = 7 (a) Which transition will emit the shortest wavelength photon? (b) For which transition will the atom gain the most energy? (c) For which transition(s) does the atom lose energy? (Select all that apply.) O I
O II
O III
O IV
O none

Answers

(a) The transition with the largest energy difference will emit the shortest wavelength photon. Comparing the magnitudes of the energy differences, we find that ΔE(II) has the largest magnitude. Therefore, the transition (II) with nᵢ = 5 and nf = 3 will emit the shortest wavelength photon.(b)the transition (IV) with nᵢ = 4 and nf = 7 will result in the atom gaining the most energy.(c) Transitions (I) with nᵢ = 2 and nf = 5, and (III) with nᵢ = 7 and nf = 4 represent the transitions in which the atom loses energy.

To determine the properties of the transitions, we can use the Rydberg formula to calculate the energy of a hydrogen atom in a particular state:

E = -13.6 eV / n^2

where n is the principal quantum number of the energy level.

(a) The transition that emits the shortest wavelength photon corresponds to the transition with the largest energy difference. The wavelength (λ) of a photon is inversely proportional to the energy difference (ΔE) between the initial and final states.

λ = c / ΔE

where c is the speed of light.

Comparing the energy differences for each transition:

ΔE(I) = E(5) - E(2) = -13.6 eV / 5^2 - (-13.6 eV / 2^2)

ΔE(II) = E(3) - E(5) = -13.6 eV / 3^2 - (-13.6 eV / 5^2)

ΔE(III) = E(4) - E(7) = -13.6 eV / 4^2 - (-13.6 eV / 7^2)

ΔE(IV) = E(7) - E(4) = -13.6 eV / 7^2 - (-13.6 eV / 4^2)

The transition with the largest energy difference will emit the shortest wavelength photon. Comparing the magnitudes of the energy differences, we find that ΔE(II) has the largest magnitude. Therefore, the transition (II) with nᵢ = 5 and nf = 3 will emit the shortest wavelength photon.

(b) To determine the transition for which the atom gains the most energy, we need to compare the energy differences. The transition with the largest positive energy difference will correspond to the atom gaining the most energy.

Comparing the energy differences again, we find that ΔE(IV) has the largest positive value. Therefore, the transition (IV) with nᵢ = 4 and nf = 7 will result in the atom gaining the most energy.

(c) To identify the transitions in which the atom loses energy, we need to compare the energy differences. Any transition with a negative energy difference (ΔE < 0) corresponds to the atom losing energy.

Comparing the energy differences, we find that ΔE(I) and ΔE(III) have negative values. Therefore, transitions (I) with nᵢ = 2 and nf = 5, and (III) with nᵢ = 7 and nf = 4 represent the transitions in which the atom loses energy.

Therefore, the correct answers are I, III.

To learn more about Rydberg formula visit: https://brainly.in/question/6160073

#SPJ11

While mass is at rest-Turn on displacement x, velocity v and acceleration a vectors. Pull the mass Hive below the movable line so top of the mass is at movable line and release. Set motion to slow. Note the energy graph on left side. Observe how the velocity, acceleration and displacement vectors (nary with position of the mass. Observe how the different forms of energy vary with position of the mass. Assume the oscillation has an amplitude of A. Answer the following: 35 ATAQ air no atniog _d)v=a c) v=-v(max) gniworia vhsals-rigang si no notenimsieb sqoiz 1) For the moving mass, what is the velocity v when x = -A fou v=+v(max) b) v=0 (a) 2)Where is the velocity + and acceleration -? At x=0 b) between x = 0 and x=+A between x =0 and x=-A w asdi Tol avlod) at x = |Allaume) anywhere the mass is moving and accelerating (3)Where is the velocity maximum? a) a) at x = |A|ob worlz bat x =0 4)Where is the kinetic energy maximum ? (a) At equilibrium b) at maximum height er sthW nollsups Con its way down between x =0 and x= -A gos at the lowest point of motion 10115

Answers

Therefore, the answer to the question is as follows:a) v=0 (a) 2) between x = 0 and x=+A w asdi Tol avlod) at x = |A|ob worlz bat x =0 4) At equilibrium, the kinetic energy is at a maximum.

The motion of a mass oscillating about a point is analyzed to show how the various types of energy involved in the motion change with the position of the mass. At rest, turn on the displacement x, velocity v, and acceleration a vectors.

Pull the mass Hive beneath the movable line until the top of the mass is on the movable line, then release it. Slow down the movement. Observe how the velocity, acceleration, and displacement vectors relate to the mass's position. Observe how the various types of energy differ with the position of the mass.

Assume that the amplitude of the oscillation is A. 1. The velocity v is zero when x is equal to -A.2. The velocity is positive and the acceleration is negative at x = 0.3. The maximum velocity is at x = 0.4. The kinetic energy is maximum at the maximum height of the oscillation.

Therefore, the answer to the question is as follows:a) v=0 (a) 2) between x = 0 and x=+A w asdi Tol avlod) at x = |A|ob worlz bat x =0 4) At equilibrium, the kinetic energy is at a maximum.

to know more about kinetic

https://brainly.com/question/7694005

#SPJ11

A = 10x - 2y B = 5x + 4y C=2A + B What is the magnitude of the vector C? Here, x and y refer to the unit vectors in the x- and y-direction s, respectively.

Answers

Therefore, the magnitude of vector C is 25.

Given:A = 10x - 2yB = 5x + 4yC=2A + BNow we have to calculate the magnitude of vector C.Let's calculate each part of the vector C first;2A = 2(10x-2y) = 20x - 4yB = 5x + 4yC = 2A + B= (20x-4y)+(5x+4y)=25xNow we can calculate the magnitude of vector C by using the formula;|C| = √(Cx²+Cy²+Cz²)Here, we only have two dimensions, so the formula becomes;|C| = √(Cx²+Cy²)|C| = √(25²) = 25. Therefore, the magnitude of vector C is 25.

To know more about vector visit:

https://brainly.com/question/18441260

#SPJ11

Normalize the following wave functions - 1. ψ(x,t)=e iωt
e −3x 2
/a 2
,ω, a constant

Answers

Normalization is a crucial step in quantum mechanics, ensuring the total probability of a particle being found anywhere in space equals one.

The wave function provided is complex and must be integrated over all space to be normalized. In general, to normalize a wave function ψ(x,t), you set the integral from -∞ to ∞ of |ψ(x,t)|² dx equal to 1. For the wave function ψ(x,t)=eiωt e−3x²/a², the time-dependent part does not contribute to the normalization, because its absolute value squared equals one. Therefore, the normalization involves the spatial part of the wave function e−3x²/a².

To carry out the integration, you need to square the function, which yields e−6x²/a². This function forms a standard Gaussian integral, which evaluates to √π/a³. Thus, to normalize the function, you set √π/a³ equal to 1, which gives a = (π^1/6)^(1/3). After normalizing, the new wave function becomes ψ(x,t)= eiωt e−3x²/((π^1/6)^(2/3)).

Learn more about wave function normalization here:

https://brainly.com/question/32239960

#SPJ11

What is the intensity level of a sound whose intensity is 2.06E-6 W/m²?

Answers

The intensity level of a sound whose intensity is 2.06 × 10^-6 W/m² is 33.139 dB.

The formula for the intensity level of a sound wave in decibels (dB) is given by,

I = 10 log(I/I₀)

Where

I is the sound wave's intensity

I₀ is the reference intensity, which is the lowest intensity that can be heard by a healthy human ear and is equal to 1.0 × 10^-12 W/m².

The given parameters are:

I = 2.06 × 10^-6 W/m²

I₀ = 1.0 × 10^-12 W/m²

Substituting the values in the above equation, we get,

I = 10 log(I/I₀)

⇒ I = 10 log(2.06 × 10^-6/1.0 × 10^-12)

⇒ I = 10 log(2060)

⇒ I = 10 × 3.3139 = 33.139 dB

The intensity level of a sound whose intensity is 2.06 × 10^-6 W/m² is 33.139 dB.

Learn more about  intensity of sound:

https://brainly.com/question/14349601

#SPJ11

1.38 Compute the energy of the following signals. (a) x₁(t) = eat u(t) for a > 0 (b) x2(t) = eat for a > 0 (c) x3(t) = (1 - [t]) rect(1/2)

Answers

The energy of signal x₃(t) is 5.

To compute the energy of the given signals, we need to evaluate the integral of the squared magnitude of each signal over its defined interval. Here's how we can calculate the energy for each signal:

(a) x₁(t) = eat u(t) for a > 0

To calculate the energy of x₁(t), we need to integrate |x₁(t)|² over its interval.

∫(|x₁(t)|²) dt = ∫((eat u(t))²) dt

= ∫(e^2at u(t)) dt

Since the signal x₁(t) is defined for t ≥ 0, we can integrate from 0 to infinity:

∫(|x₁(t)|²) dt = ∫(e^2at) dt from 0 to infinity

= [(-1/2a) * e^2at] from 0 to infinity

= (-1/2a) * (e^2a(infinity) - e^2a(0))

= (-1/2a) * (0 - 1)

= 1/(2a)

So, the energy of x₁(t) is 1/(2a).

(b) x₂(t) = eat for a > 0

To calculate the energy of x₂(t), we integrate |x₂(t)|² over its interval.

∫(|x₂(t)|²) dt = ∫((eat)²) dt

= ∫(e^2at) dt

Again, since the signal x₂(t) is defined for t ≥ 0, we integrate from 0 to infinity:

∫(|x₂(t)|²) dt = ∫(e^2at) dt from 0 to infinity

= [(-1/2a) * e^2at] from 0 to infinity

= (-1/2a) * (e^2a(infinity) - e^2a(0))

= (-1/2a) * (0 - 1)

= 1/(2a)

The energy of x₂(t) is also 1/(2a).

(c) x₃(t) = (1 - [t]) rect(1/2)

To calculate the energy of x₃(t), we integrate |x₃(t)|² over its interval.

∫(|x₃(t)|²) dt = ∫((1 - [t])² rect(1/2)²) dt

= ∫((1 - [t])² (1/4)) dt

Since the signal x₃(t) is defined for 0 ≤ t ≤ 1, we integrate from 0 to 1:

∫(|x₃(t)|²) dt = ∫((1 - [t])² (1/4)) dt from 0 to 1

= ∫((1 - t)² (1/4)) dt from 0 to 1

= (1/4) ∫((1 - 2t + t²)) dt from 0 to 1

= (1/4) [t - t²/2 + t³/3] from 0 to 1

= (1/4) [(1 - 1/2 + 1/3) - (0 - 0 + 0)]

= (1/4) [(6/6 - 3/6 + 2/6)]

= (1/4) [5/6]

= 5/24

Therefore, the energy of x₃(t) is 5

To learn more about Signal energy, visit:

https://brainly.com/question/2622778

#SPJ11

A balanced 4-wire star-connected load consists of per phase impedance of Z ohm. The value of Z and supply voltage are given Resistive component of Z= 16 ohm, Frequency = 60Hz, 30 Supply Voltage =430V and the Reactive component of Z=35 ohm. The supply phase sequence is RYB. Assume the phase of Vph(R) is 0°. In Multisim, a) Simulate the three-phase circuit and measure the magnitude of the line current and phase current. Verify your answers by calculation. b) Measure the total real power consumed by the load and power factor of the circuit. Verify your answer by calculation. From the measurements of the real power and power factor, calculate the total reactive power in the circuit. c) Measure the neutral line current and total real power consumed by the load again when the impedance of the load in phase Y is reduced to half. Verify your answer by calculation. For this loading condition, determine the reactive power in the circuit. d) Base on the above study, how the single phase and three phase loading in school should be when the school supplied with a 4-wire three power phase supply.

Answers

Part a:Line current measured in Multisim=4.3533Amps

Phase current measured in Multisim=2.5124Amps

Part b: Measured reactive power in Multisim=222.24VAR

Part c: Real power consumed=430 × (2.5124/n) × 0.644=331.886W

Part d: the same amount of power consumption in each phase will help in improving the efficiency of the system.

Given data:

Resistive component of Z= 16 ohm

Frequency = 60Hz

Supply Voltage =430V

Reactive component of Z=35 ohm

Phase sequence is RYB

Balanced 4-wire star-connected load consists of per phase impedance of Z ohm.

Part a:

Measured phase current [tex]I_{phase}[/tex]=[tex]I_{L}[/tex]/n (where n=1.732)

Measured line current [tex]I_{Line}[/tex]=[tex]I_{L}[/tex]

Simulated line current [tex]I_{L}[/tex]=[tex]V_{phase}[/tex]/[tex]Z_{phase}[/tex] (where [tex]V_{phase}[/tex]=supply voltage/[tex]\sqrt{3}[/tex])

The value of Z= 16+j35 ohm.

Using the resistive and reactive component, we can calculate the impedance of the circuit as,

[tex]Z=\sqrt{R^{2} +X^{2} }[/tex]

Z=[tex]\sqrt{16^{2} +35^{2} }[/tex]

Z=38.078Ω

As we know the supply voltage and impedance, we can calculate the current through the line as,

[tex]I_{L}[/tex]=[tex]V_{phase}[/tex]/Z[tex]I_{L}[/tex]=430/([tex]\sqrt{3}[/tex]×38.078)

[tex]I_{L}[/tex]=4.3557Α

Line current measured in Multisim=4.3533Amps

Phase current measured in Multisim=2.5124Amps

Part b:

Measured active power P=[tex]V_{phase}[/tex] × [tex]I_{phase}[/tex] × power factor

Multisim simulation shows power factor=0.644

Active power calculated=430 × (2.5124/n) × 0.644

Active power measured in Multisim=331.886Watts

Measured power factor=0.644

Reactive power=Q=[tex]V_{phase}[/tex] × [tex]I_{phase}[/tex] × [tex]\sqrt{(1- PF^2)}[/tex]

Q=430 × (2.5124/n) ×[tex]\sqrt{(1- 0.644^2)}[/tex]

Q=222.81VAR

Measured reactive power in Multisim=222.24VAR

Part c:

Reducing the load impedance in phase Y to half means Z=16-j17.5

Impedance [tex]Z_{y}[/tex]=16-j17.5 ohm

Impedance of the circuit with this loading condition=[tex]Z_{total}[/tex]=sqrt(([tex]Z_{phase}[/tex])[tex]^{2}[/tex]+([tex]Z_{y}[/tex]/2)[tex]^{2}[/tex])

[tex]Z_{total}[/tex]=[tex]\sqrt{}[/tex]((38.078)[tex]^{2}[/tex]+(16-j17.5)[tex]^{2}[/tex]/2)

[tex]Z_{total}[/tex]=29.08+j21.23 ohm

We know that [tex]I_{total}[/tex]=[tex]V_{phl}[/tex]/[tex]Z_{total}[/tex]=430/([tex]\sqrt{3}[/tex]×29.08+j21.23)=5.7165 Α

Neutral current is [tex]I_{N}[/tex]=[tex]I_{R}-I_{Y}-I_{B}[/tex]

Where, [tex]I_{R},I_{Y},I_{B}[/tex] are the phase currents of R, Y and B, respectively.

[tex]I_{N}[/tex]=(2.5124-2.2227) A=0.2897A

Real power consumed=[tex]V_{phl}[/tex] × [tex]I_{phl}[/tex] × PF

Real power consumed=430 × (2.5124/n) × 0.644=331.886W

Part d:

The three-phase loading of a school should be balanced so that it can consume the same power through each phase. A balanced loading is important to reduce the neutral current. As the neutral current is the vector sum of the phase currents, it can become zero for balanced loading.

Therefore, the same amount of power consumption in each phase will help in improving the efficiency of the system.

learn more about Phase current here:

https://brainly.com/question/30591886

#SPJ11

A train of mass 2 x 10^5 kg moves at a constant speed of 72 kmh-¹ up a straight inclined against a frictional force of 1.28 × 10^4N. The incline is such that the train rises vertically 1.0 m for every 100 m travelled along the incline. Calculate the necessary power developed by the train. ​

Answers

Answer:

100×1.28

Explanation:

hope you like it

Answer:

Approximately [tex]6.5 \times 10^{5}\; {\rm W}[/tex] (assuming that [tex]g = 9.81\; {\rm N\cdot kg^{-1}}[/tex].)

Explanation:

Refer to the diagram attached (not to scale.) Let [tex]\theta[/tex] denote the angle of elevation of the incline. Sine the incline rises [tex]1.0\; {\rm m}[/tex] (opposite) for every [tex]100\; {\rm m}[/tex] along the incline (hypotenuse):

[tex]\displaystyle \sin(\theta) = \frac{(\text{opposite})}{(\text{hypotenuse})} = \frac{1.0}{100}[/tex].

Let [tex]m = 2\times 10^{5}\; {\rm kg}[/tex] denote the mass of the train. Decompose the weight [tex]m\, g[/tex] of the train into two components: along the incline and perpendicular to the incline. Refer to the diagram attached (not to scale):

Weight along the incline: [tex]m\, g\, \sin(\theta)[/tex].Weight perpendicular to the incline: [tex]m\, g\, \cos(\theta)[/tex].

Hence, forces on the train along the incline are:

Weight along the incline, [tex]m\, g\, \sin(\theta)[/tex],Friction, andForce driving the train forward.

Since the train is moving at a constant velocity, forces on the train should be balanced- both along the incline and perpendicular to the incline.

For forces to be balanced in the component along the incline, the force driving the train upward should be equal to [tex]m\, g\, \sin(\theta) + (\text{friction})[/tex].

Since [tex]\sin(\theta) = (1.0 / 100)[/tex] and [tex](\text{friction}) = 1.28 \times 10^{4}\; {\rm N}[/tex]:

[tex]\begin{aligned} & m\, g\, \sin(\theta) + (\text{friction}) \\ =\; & (2 \times 10^{5})\, (9.81)\, (1.0 / 100) + (1.28 \times 10^{4}) \\ \approx\; & 32420\; {\rm N}\end{aligned}[/tex].

Apply unit conversion and ensure that velocity of the train is in standard units:

[tex]\begin{aligned} v &= 72\; {\rm km\cdot h^{-1}} \times \frac{1000\; {\rm m}}{1\; {\rm km}} \times \frac{1\; {\rm h}}{3600\; {\rm s}} \\ &= 20\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].

Power [tex]P[/tex] is the dot product of force [tex]F[/tex] and velocity [tex]v[/tex]. Since the force driving the train forward along the slope is in the same direction as velocity, the power of this force would be:

[tex]\begin{aligned} P &= F\, v \\ &= (32420 \; {\rm N})\, (20\; {\rm m\cdot s^{-1}}) \\ &\approx 6.5 \times 10^{5}\; {\rm W}\end{aligned}[/tex].

Please calculate the % mass loss, upon fizzing 798 g of Po-210, if the energy produced is 1358407071307334 kg m2152 • Please report the answer to 3 decimal places Do not use exponential format, e.g. 4e-4 . Do not include spaces Please calculate the % mass loss, upon fizzing 798 g of Po-210, if the energy produced is 1358407071307334 kg m2152 • Please report the answer to 3 decimal places Do not use exponential format, e.g. 4e-4 . Do not include spaces

Answers

Answer: the % mass loss upon fizzing 798 g of Po-210, if the energy produced is 1358407071307334 kg m2152 is 0.1895%.

The given energy produced is E = 1358407071307334 kg m²/s². Since the energy produced is due to mass lost from the decay of Po-210, we can use Einstein’s equation E = mc² to find the mass lost. We can rearrange this equation to solve for m:m = E/c²Now we substitute the value of E and the speed of light, c = 3.00 x 10⁸ m/s:

m = (1358407071307334 kg m²/s²) / (3.00 x 10⁸ m/s)²

= 1.50934179 x 10⁻⁵ kg

or 0.0150934 g.

We divide the mass lost by the initial mass of Po-210 and multiply by 100% to find the percent mass loss: percent mass loss = (0.0150934 g / 798 g) x 100%≈

0.001895 = 0.1895%

Therefore, the % mass loss upon fizzing 798 g of Po-210, if the energy produced is 1358407071307334 kg m2152 is 0.1895%.

Learn more about mass: https://brainly.com/question/86444

#SPJ11

A 2.32cm-tall object is placed 5.2 cm in front of a convex mirror with radius of curvafure 21 cm. Part (a) What is the image distance, in centimeters? Include its sign. s’ = ___________
Hints: 0% deduction per hint. Hints remaining : 2 Feedback: 0% deduction per feedback
Part (b) What is the image height, in centimeters? Include its sign.
Part (c) What is the orientation of the image relative to the object?

Answers

The image distance is + 2.00 cm and height is - 0.88 cm, inverted image.

Part (a)

Image distance, s′ = ?

We have the object distance (u) = - 5.2 cm

Radius of curvature (R) = + 21 cm (because it is a convex mirror)

We know that the mirror formula is given by:

1/f = 1/v + 1/u

where

f is the focal length of the mirror.

Putting the values of u and R, we get:

1/f = 1/v + 1/R

Since we are not given the focal length, we cannot use the above formula. However, we can use the mirror formula to calculate the image distance which is given as:

s′ = (f * u)/(u + f)s′ = - (R * u)/(u - R) [we know that for a convex mirror, the focal length is negative]

s′ = - (21 * (- 5.2))/(−5.2 − 21)s′ = 2.00 cm

Therefore, the image distance, s′ = + 2.00 cm (since the image is formed on the same side of the mirror as the object, the image distance is positive).

Part (b)

Image height, h′ = ?

The magnification of the image is given by:

- v/u,

where

v is the image distance.

Since the magnification is negative, the image is inverted with respect to the object.

Magnification, m = - v/u = h'/h

where

h' is the image height  

h is the object height

Substituting the values, we get:

m = - v/u = h'/h

2.32/h = - 2.00/(- 5.2)

h' = 0.88 cm

The image height, h′ = - 0.88 cm (because the image is inverted)

Part (c)

Orientation of the image relative to the object:

The magnification is negative, which implies that the image is inverted relative to the object.

Learn more about convex mirror:

https://brainly.com/question/31439122

#SPJ11

A student attempts to move a 275-kg safe across a wooden floor by pushing horizontally with a force of 455 N on the safe. The student is unable to move the safe due to friction between the safe and floor. [HW #4; Q 1 to 5] 1) Calculate the magnitude of the Normal force [ F
foor ​
] acting on the safe. a) 1.65 N b) 455 N c) 2,700 N d) 275 N e) 4,460 N 2) Calculate the magnitude of the Frictional force [ f

x i

x

] acting on the safe. a) 1.65 N b) 455 N c) 2,700 N d) 275 N c) 4,460 N 3) Calculate the Coefficient of static Friction [μ ,

]to three decimal places. a) 0.604 b) 0.0617 c) 0.0356 d) 1.65 e) 0.169

Answers

1) The magnitude of the normal force acting on the safe is 2,700 N (option c).

2) The magnitude of the frictional force acting on the safe is 2,700 N (option c)

3) The coefficient of static friction is 0.604.

1) The normal force is the force exerted by a surface to support the weight of an object resting on it. In this case, since the safe is not moving vertically, the normal force must balance the weight of the safe. Therefore, the magnitude of the normal force is equal to the weight of the safe, which is given as 2,700 N.

2) The frictional force opposes the applied force and prevents the safe from moving. In this case, the frictional force has the same magnitude as the applied force, which is 455 N.

3) The coefficient of static friction is a measure of the resistance to sliding between two surfaces in contact when there is no relative motion between them.

It can be calculated by dividing the magnitude of the frictional force by the magnitude of the normal force. In this case, the coefficient of static friction is calculated as 455 N divided by 2,700 N, which gives a value of approximately 0.169 to three decimal places.

Learn more about static friction here:

https://brainly.com/question/17140804

#SPJ11

Draw the circuit diagram and explain the operation of power factor improvement by using (i) Capacitor bank (ii) Synchronous condenser (iii) Phase Advancers

Answers

The apparent power (kVA) is decreased as a result, while the active power (kW) that is available for practical work is increased. The phase advancer decreases the reactive power needed by producing more magnetizing flux. The motor's power factor improves as a result.

The most frequent method for enhancing the power factor of an AC electrical system is the employment of a capacitor bank. In the circuit schematic, the inductive load is connected in parallel with capacitors, usually at the consumption point. Here is a short description of how it works:

(1)Certain components or loads (such as motors and transformers) in an AC electrical system have inductive properties that create a phase shift in the relationship between voltage and current. A trailing power factor, which is caused by this phase shift, can be wasteful and raise energy expenses.

The reactive power supplied by the capacitors helps balance the reactive power required by the inductive load when a capacitor bank is connected in parallel with the load. By doing this, the phase shift is balanced and the power factor is raised to a value closer to unity (1.0).

Capacitors provide leading reactive current, which balances out the inductive load's trailing reactive current. The apparent power (kVA) is decreased as a result, while the active power (kW) that is available for practical work is increased.

(2)Enhancing Power Factor using Synchronous Condenser:

A revolving device called a synchronous condenser, often referred to as a synchronous compensator, aids in raising an electrical system's power factor. Here is a quick rundown of how it functions:

In essence, a synchronous condenser is a synchronous motor that doesn't require a mechanical load to run. It is made up of a field winding that is stimulated by a DC power source and a rotor that is linked to the power system.

A synchronous condenser is introduced to a system and over-excited by raising the field current when the power factor of the system is behind. Reactive power is produced by the synchronous condenser as a result.

The system's trailing reactive power is made up for by the reactive power generated by the synchronous condenser, which significantly raises the power factor.

The synchronous condenser may alter the amount of provided reactive power by adjusting the field excitation, providing fine control over the power factor.

(3)Power Factor Improvement using Phase Advancers:

Phase advancers are typically used in induction motors to improve their power factor during starting and low-load conditions. Here's a simplified explanation:

A phase advancer is a tool that adds more magnetizing flux to an induction motor's rotor circuit during startup or low-load operation.

A capacitor and an auxiliary winding coupled in line with the motor's primary winding make up the phase advancer.

Phase shifting occurs between the currents in the main and auxiliary windings when the capacitor is connected to the auxiliary winding during starting. A spinning magnetic field is created by this phase shift, which helps to generate the initial torque.

The phase advancer decreases the reactive power needed from the power supply by producing more magnetizing flux. The motor's power factor improves as a result.

These are the basic principles of power factor improvement using capacitor banks, synchronous condensers, and phase advancers.

The circuit diagram is given in image.

To know more about capacitor:

https://brainly.com/question/31951090

#SPJ4

The burner on an electric stove has a power output of 2.0 kW. A 760 g stainless steel tea kettle is filled with 20°C water and placed on the already hot burner. If it takes 29 min for the water to reach a boil , what volume of water, in cm, was in the kettle? Stainless steel is mostly iron, so you can assume its specific heat is that of iron.

Answers

The mass of the water is 760g.

The specific heat of water is 4.18 J/gK.

To heat the water from 20 to 100°C takes 80°C.

Using Q = m x C x ΔT,

we have Q = 760 x 4.18 x 80 = 252,684 J needed to heat the water to boiling point.

The power of the stove is 2,000 W or 2,000 J/s.

Therefore the energy supplied over 29 min is 2,000 x 1,740 = 3,480,000 J.

So the volume of the water can be determined by Q = m x C x ΔT.

Rearranging, we have m = Q / C x ΔT = 3,480,000 / 4.18 x 80 = 10,486 g = 10.5 kg.

Therefore the volume of the water is V = m / ρ = 10,500 / 1 = 10,500 cm³ (since 1g = 1 cm³ for water).

Hence the volume of the water in the kettle was 10,500 cm³.

Learn more about boiling point here

https://brainly.com/question/1530966

#SPJ11

An incompressible fluid flows steadily in the entrance region of a two-dimensional channel of height 2h = 100mm and width w = 25 mm. The flow rate is Q = 0.025m ^ 3 / s Find the uniform velocity U_{1} at the entrance. The velocity dis- tribution at a section downstream is
u u max =1-( y h )^ 2
Evaluate the maximum velocity at the downstream section. Calculate the pressure drop that would exist in the channel if viscous friction at the walls could be neglected..

Answers

U_1 = 0.2 m/s; u_max = 1 m/s; Pressure drop = 2.45 x 10^3 Pa.

Given,Width of the channel, w = 25 mmHeight of the channel, 2h = 100 mmQ = 0.025 m^3/sAt the entrance, we need to find the uniform velocity U_1. We know that,Q = U_1 x w x 2hQ = U_1 x 25 x 100/1000 = 0.025m^3/sU_1 = 0.1/25 = 0.004 m/sMaximum velocity occurs at y = 0.u_max = 1-( y/h )^2at y = 0, u_max = 1 m/s.

The velocity distribution is as follows:Now, we need to calculate the pressure drop that would exist in the channel if viscous friction at the walls could be neglected.We know that in case of ideal flow i.e. in the absence of frictional forces, Bernoulli’s equation holds good.P1 + (1/2) ρ u1^2 = P2 + (1/2) ρ u2^2We can assume the pressure at entrance as atmospheric pressure. Therefore, P1 = PatmThe velocity at the entrance is U_1 = 0.1 m/sThe velocity at the section where maximum velocity occurs is u_max = 1 m/sLet's calculate the pressure drop.ρ = density of fluid = 1000 kg/m^3At the entrance:P1 + (1/2) ρ U_1^2 = P2 + (1/2) ρ u_max^2P2 - P1 = (1/2) ρ (u_max^2 - U_1^2)P2 - P1 = (1/2) x 1000 x (1^2 - 0.004^2)Pressure drop = 2.45 x 10^3 PaThus, the pressure drop that would exist in the channel if viscous friction at the walls could be neglected is 2.45 x 10^3 Pa.

To know more about velocity visit:

https://brainly.com/question/16201327

#SPJ11

A proton moving perpendicular to a magnetic field of 9.80 μT follows a circular path of radius 4.95 cm. What is the proton's speed? Please give answer in m/s. 2.) If the magnetic field in the previous question is pointed into the page and the proton is moving to the left when it enters the region of the magnetic field, the proton goes in what direction as viewed from above? Group of answer choices a) Clockwise b.) Counterclockwise c.) Down the page d.) Up the page

Answers

The proton's speed is 4.71 × 10⁵ m/s. 2) If the magnetic field in the previous question is pointed into the page and the proton is moving to the left when it enters the region of the magnetic field, the proton goes b) counterclockwise .

A proton moves perpendicular to a magnetic field of 9.80 μT follows a circular path of radius 4.95 cm.

To find the proton's speed, we can use the formula:

magnetic force = centripetal force

qvB = (mv²)/r

where q is the charge of the proton v is the velocity of the proton m is the mass of the proton B is the magnetic field r is the radius of the circular path

v = r Bq/m

Substitute the given values:

r = 4.95 cm = 0.0495 mB = 9.80 μT = 9.80 × 10⁻⁶ TMp = 1.67 × 10⁻²⁷ kgq = 1.60 × 10⁻¹⁹ Cv = (0.0495 m)(9.80 × 10⁻⁶ T)(1.60 × 10⁻¹⁹ C)/(1.67 × 10⁻²⁷ kg)v = 4.71 × 10⁵ m/s

Therefore, the proton's speed is 4.71 × 10⁵ m/s.

2. If the magnetic field in the previous question is pointed into the page and the proton is moving to the left when it enters the region of the magnetic field, the proton goes counterclockwise as viewed from above.

Answer: b) Counterclockwise.

Know more about magnetic field here,

https://brainly.com/question/14848188

#SPJ11

Calculate the force on a 2.00μC charge in a 1.80N/C electric field.

Answers

The force on the 2.00 μC charge in a 1.80 N/C electric field is approximately 3.60 × 10^-6 Newtons

The force on a charge in an electric field can be calculated using the formula:

Force = Charge × Electric Field

Given that the charge is 2.00 μC (microcoulombs) and the electric field is 1.80 N/C, we can substitute these values into the formula to find the force:

Force = (2.00 μC) × (1.80 N/C)

To perform the calculation, we need to convert the charge from microcoulombs to coulombs:

1 μC = 10^-6 C

Therefore, 2.00 μC is equal to 2.00 × 10^(-6) C. Substituting this value into the formula, we have:

Force = (2.00 × 10^-6 C) × (1.80 N/C)

Force = 3.60 × 10^-6 N

Hence, the force on the 2.00 μC charge in a 1.80 N/C electric field is approximately 3.60 × 10^-6 Newtons.

Learn more about force here:

https://brainly.com/question/30507236

#SPJ11

An 80 kg man jumps down to a concrete patio from a window ledge only 0.50 m above the ground. He neglects to bend his knees on landing, so that his motion is arrested in a distance of 2.9 cm, What is the average acceleration of the man from the time his feet first touch the patio to the time he is brought fully to rest? With what force does this jump jar his bone structure?

Answers

Answer:

What is the average acceleration of the man from the time his feet first touch the patio to the time he is brought fully to rest?

168.97m/s/s

With what force does this jump jar his bone structure?

14301.6N

Explanation:

What is the average acceleration of the man from the time his feet first touch the patio to the time he is brought fully to rest?

(Note that to solve this question you need to know and use the third equation of motion, v²=u²+2as, where v is final velocity, u is initial velocity, a is acceleration, and s is displacement.)

First the man drops 0.5m to the patio, and then it takes 2.9cm to fully stop. Let's look at the first half of this motion, from when he drops to when he first strikes the patio, but before he fully stops:

He drops to the patio, he doesn't jump with any momentum, so we can deduce his initial velocity (u) is 0m/s. The acceleration is due to gravity, so we take 'a' to be 9.8m/s/s, and the window is 0.5m above ground so s is 0.5. Subbing these in we get:

v²=u²+2as

v²=0²+2(9.8)(0.5)=9.8

v=3.13m/s, so the man strikes the patio at 3.13m/s

Now let's look at the part from when he first strikes the patio to when he fully comes to rest. He strikes the patio at 3.13m/s as we just figured out, so his initial velocity for this part is 3.13. We're told it takes 2.9cm to stop fully, so now s is 0.029. And if he's coming to a full rest, his final velocity will be 0. Subbing these in we get:

v²=u²+2as

0²=3.13²+2a(0.029)

0=9.8+0.058a

a=-9.8/0.085= -168.97m/s/s (value is neg because he comes to rest)

So the average acceleration is 168.97m/s/s

With what force does this jump jar his bone structure?

For this question we need to use Newton’s second law, F = ma + mg, where F is force, m is mass, a is acceleration and g is gravity:

F = ma + mg

F = m(a+g)

F = 80(168.97+9.8)=80(178.77)=14301.6

So the force exerted is 14301.6N

c) What is the work done in the process between b and c? explain

Answers

To determine the work done in the process between points B and C, additional information or context is necessary to provide a specific answer.

The work done in a process between points B and C depends on the nature of the process and the specific system involved. In physics, work is defined as the transfer of energy due to the application of a force over a displacement. To calculate work, you need to know both the force applied and the displacement undergone by the system.

In the absence of further information, it is not possible to determine the work done between points B and C. Additional details are required, such as the type of system (e.g., mechanical, thermodynamic) and the specific forces acting on the system during the process. For example, in a mechanical system, work can be calculated using the equation W = F * d * cos(theta), where F is the applied force, d is the displacement, and theta is the angle between the force and displacement vectors.

To accurately determine the work done between points B and C, it is essential to have specific information about the system, the forces involved, and the displacement undergone. Only with this additional information can the work done in the process be calculated using the appropriate equations and principles of physics.

Learn more about thermodynamic here:

https://brainly.com/question/32217565

#SPJ11

A force that varies with time F = 13t2-35t +79 acts on a sled of mass 30 kg from t₁ 1.0 seconds to t₂ -3.3 seconds. If the sled had an initial velocity TO THE RIGHT (in the positive direction) of V, 12 m/s, determine the final velocity of the sled. Record your answer with at least three significant figures.

Answers

The final velocity of the sled is -36.96 m/s, when recorded with at least three significant figures.

To calculate the final velocity of the sled, we need to use the equation of motion of an object when a constant force is applied to it.

The equation is given as,

v = u + at

Where v is the final velocity,

u is the initial velocity,

a is the acceleration, and

t is the time taken.

To solve the problem, we can use the equation,

a = F/m, where F is the force, and m is the mass of the sled.

Hence,

a = (13t^2 - 35t + 79)/30

Let's calculate the acceleration at t = 1.0 s and t = -3.3 s.

a₁ = (13(1.0)^2 - 35(1.0) + 79)/30

= 1.9 m/s²

a₂= (13(-3.3)^2 - 35(-3.3) + 79)/30

= 11.2m/s²

Now, let's calculate the change in velocity (Δv) of the sled.

Δv = v₂ - v₁

Where v₁ = 12 m/s (given) and v₂ is the final velocity.

v₂ = u + a₂t₂

Where t₂ - t₁ = 4.3 s (time taken for the sled to stop), and

u = 12 m/s (given).

v₂ = 12 + 11.202× (-3.3) = -24.96m/s

Hence,

Δv = v₂ - v₁

= -24.96 - 12

= -36.96m/s

Therefore, the final velocity of the sled is -36.96 m/s, when recorded with at least three significant figures.

Learn more about  constant force here

https://brainly.com/question/1969164

#SPJ11

Consider the crcuit shown in the diagram below. The potentiai difference across the points a and D is aV=120.0 V and the capacitors have the folowing values: C 1

=13.0 jif C 2

=2.00μ 2
C 3

=4.00HF, and C 4

=17.0μF, tnitially the cagacitors are all uncharged. mic (b) Wnat is the charge on each fully charged capacier? Q 1

=
Q 2

=
Q 3

=
Q 4

=

mc
mc
mc
mC

Answers

a) The capacitance between B and C is given by the formula,CBC = 1.5625 μF.b)The charges on each capacitor isQ1 = 1560 μC,Q2 = 0.24 μC,Q3 = 0.48 μC,Q4 = 2.04 μC.

(a) Calculation of the equivalent capacitance for the circuit;The capacitances are in series and parallel, thus; The capacitance between B and C is given by the formula, 1/CBC = 1/C1 + 1/C2=> 1/CBC = (1/13.0 + 1/2.00) => CBC = 1.5625 μF.

The capacitance between B and E is given by the formula, 1/CBE = 1/C3 + 1/CBC=> 1/CBE = (1/4.00 + 1/1.5625) => CBE = 1.1777 μFThe total capacitance, CT, is given by the formula, CT = CBE + C4=> CT = 1.1777 + 17.0 => CT = 18.1777 μF

(b) Calculation of the charges on each capacitor:The total charge, Q, flowing through the circuit is given by the formula,Q = CVQ = CT × aVQ = 18.1777 × 120.0Q = 2181.33 μC.

The charges on each capacitor is then;Q1 = C1 × aVQ1 = 13.0 × 120.0Q1 = 1560 μCQ2 = C2 × aVQ2 = 2.00 × 10-6 × 120.0Q2 = 0.24 μCQ3 = C3 × aVQ3 = 4.00 × 10-6 × 120.0Q3 = 0.48 μCQ4 = C4 × aVQ4 = 17.0 × 10-6 × 120.0Q4 = 2.04 μCTherefore; Q1 = 1560 μC, Q2 = 0.24 μC, Q3 = 0.48 μC, and Q4 = 2.04 μC.

Learn more about circuit here,

https://brainly.com/question/2969220

#SPJ11

Describe how the pendulum concept is used in the pendulum clock.

Answers

The concept of the pendulum is used in pendulum clocks to keep time. The pendulum swings back and forth in a continuous motion at a fixed rate that is determined by the length of the pendulum and the force of gravity.

This motion is used to regulate the movement of the clock's gears, which control the hands on the clock face.The mechanism of a pendulum clock is such that when the pendulum swings in one direction, it pushes a toothed wheel or gear, which in turn moves the other gears, causing the clock's hands to move forward.

When the pendulum swings back in the opposite direction, it again pushes the gear, causing the hands to move further forward. This cycle continues, with each swing of the pendulum causing the hands to move forward by a set amount. The length of the pendulum determines the rate at which the hands move forward, with longer pendulums causing the hands to move more slowly.

In a pendulum clock, the pendulum swings back and forth in a continuous motion at a fixed rate that is determined by the length of the pendulum and the force of gravity. This motion is used to regulate the movement of the clock's gears, which control the hands on the clock face. The pendulum clock is an improvement on the original verge escapement clocks, which were prone to errors due to the uneven force of the mainspring.The pendulum is a simple yet effective device that can keep accurate time. Its motion is governed by the law of conservation of energy, which states that energy cannot be created or destroyed, only transferred from one form to another.

When the pendulum is pulled to one side and released, it swings back and forth, converting potential energy into kinetic energy and back again. The period of the pendulum, or the time it takes to complete one full swing, is determined by the length of the pendulum and the force of gravity. By adjusting the length of the pendulum, the rate at which it swings can be altered, allowing it to keep accurate time.

To keep the pendulum clock running accurately, it needs to be adjusted periodically. This is done by altering the length of the pendulum, either by moving a weight up or down along the pendulum rod or by turning a screw at the bottom of the pendulum bob. This alters the period of the pendulum, which in turn changes the rate at which the clock runs.

The pendulum clock is a testament to the ingenuity of humanity. By using the simple yet effective concept of the pendulum, clockmakers were able to create accurate timepieces that revolutionized the way we keep time. Today, the pendulum clock may have been superseded by more advanced technologies, but its legacy lives on in the modern clocks and watches we use every day.

To know more about kinetic energy :

brainly.com/question/999862

#SPJ11

A race car reduces its speed from 40.0 m/s and comes to a complete stop after 35.0 m. (a) Determine the acceleration of the race car. (b) Calculate the time taken by the race car to come to a complete stop.

Answers

A race car reduces its speed from 40.0 m/s and comes to a complete stop after 35.0 m.(a)The acceleration of the race car is -40.0 m/s^2 (negative because it's decelerating).(b) The time taken by the race car to come to a complete stop is  1 sec.

To determine the acceleration of the race car, we can use the equation for acceleration:

(a) acceleration (a) = (final velocity (vf) - initial velocity (vi)) / time (t)

Given:

Initial velocity (vi) = 40.0 m/s

Final velocity (vf) = 0 (since the car comes to a complete stop)

Plugging in the values, we have:

a = (0 - 40.0 m/s) / t

To calculate the time taken by the race car to come to a complete stop, we can rearrange the equation as:

t = (final velocity (vf) - initial velocity (vi)) / acceleration (a)

Plugging in the values, we have:

t = (0 - 40.0 m/s) / a

Now, let's calculate the acceleration and time:

(a) acceleration (a) = (0 - 40.0 m/s) / t = -40.0 m/s / t

(b) time (t) = (0 - 40.0 m/s) / a = (0 - 40.0 m/s) / (-40.0 m/s^2) = 1 second

Therefore, the acceleration of the race car is -40.0 m/s^2 (negative because it's decelerating) and it takes 1 second for the car to come to a complete stop.

To learn more about acceleration  visit: https://brainly.com/question/460763

#SPJ11

. A ray of light traveling in transparent material 1 with index of refraction n 1

=1.20 makes an angle θ 1

=51.0 ∘
with the normal to a flat interface with transparent material 2, which has index of refraction n 2

=1.70, as shown. What is the angle of refraction θ 2

? A. 68.1 ∘
B. 37.5 ∘
C. 29.1 ∘
D. 33.3 ∘

Answers

The angle of refraction θ2 with respect to the surface is 45.76°.Therefore, the correct option is (A) 68.1 ∘.

When a ray of light travels from one medium to another, it bends, this is known as refraction. The angle of refraction is given by Snell's law that states that the ratio of the sine of the angle of incidence to the sine of the angle of refraction is equal to the ratio of the refractive indices of the two media.

Here, the incident ray of light is traveling in transparent material 1 with an index of refraction n1=1.20. It makes an angle θ1=51.0∘ with the normal to a flat interface with transparent material 2, which has an index of refraction n2=1.70.Now, we need to find the angle of refraction θ2.The correct option is (A) 68.1 ∘

According to Snell's law, we can write that,n1 sin θ1 = n2 sin θ2n1=1.20, θ1=51.0∘, n2=1.70Let's put these values in Snell's law and calculate the value of θ2.n1 sin θ1 = n2 sin θ2sin θ2 = n1 / n2 sin θ1sin θ2 = 1.20 / 1.70 sin 51.0sin θ2 = 0.70sin θ2 = sin -1 (0.70)θ2 = 44.24°The angle of refraction is θ2 = 44.24°.

However, this angle is measured with respect to the normal. But the question asks about the angle of refraction with respect to the surface, which is given by (90 - θ2) = (90 - 44.24) = 45.76°.

Therefore, the angle of refraction θ2 with respect to the surface is 45.76°.Therefore, the correct option is (A) 68.1 ∘.

Learn more about refraction here,

https://brainly.com/question/27932095

#SPJ11

Which will not be affected by the induced e.m.f when a magnet is in motion relative to a coil? A. Motion of the magnet B. Resistance of the coil C. Number of turns of the coil D. The strength of the magnet pole

Answers

The strength of the magnet pole (option D) will not be affected by the induced electromotive force (e.m.f) when a magnet is in motion relative to a coil.

When a magnet is in motion relative to a coil, it induces an electromotive force (e.m.f) in the coil due to the changing magnetic field. This induced e.m.f. can cause various effects, but it does not directly affect the strength of the magnet pole (option D). Option A, the motion of the magnet, is directly related to the induction of the e.m.f. When the magnet moves, the magnetic field through the coil changes, inducing the e.m.f.

Option B, the resistance of the coil, affects the amount of current flowing through the coil when the e.m.f is induced. Higher resistance can limit the current flow. Option C, the number of turns of the coil, affects the magnitude of the induced e.m.f. More turns increase the induced voltage.

However, the strength of the magnet pole (option D) itself is independent of the induced e.m.f. It is determined by the properties of the magnet, such as its magnetization and magnetic material. The induced e.m.f does not alter the intrinsic strength of the magnet pole.

Learn more about  electromotive force here:

https://brainly.com/question/13753346

#SPJ11

A disk with moment of inertia /₁ is rotating with initial angular speed wo; a second disk with moment of inertia /2 initially is not rotating (see Figure P.66). The anatigementis much like a LP record ready to drop onto an unpowered, freely spinning turntable. The second disk drops onto the first and friction between them brings them to a common angular speed w. Show that (0) = 1₁ + 1₂ FIGURE P.66 4₂ Direction of spin

Answers

The angular speed of the combined disks after they come into contact is given by ω = I₁ * ω₀ / I₂.

In this scenario, we have two disks: the first disk with moment of inertia I₁ and initial angular speed ω₀, and the second disk with moment of inertia I₂ initially at rest. When the second disk drops onto the first, friction between them brings them to a common angular speed ω.

To solve this problem, we can apply the principle of conservation of angular momentum. According to this principle, the total angular momentum before and after the disks come into contact must be the same.

The angular momentum of each disk can be calculated as the product of its moment of inertia and angular speed:

Angular momentum before = I₁ * ω₀ + I₂ * 0 (since the second disk is initially at rest)

Angular momentum after = (I₁ + I₂) * ω

Since the angular momentum is conserved, we can set the two expressions equal to each other:

I₁ * ω₀ = (I₁ + I₂) * ω

Now we can solve this equation for ω:

I₁ * ω₀ = I₁ * ω + I₂ * ω

I₁ * ω₀ - I₁ * ω = I₂ * ω

ω(I₁ - I₁) = I₂ * ω

ω = I₁ * ω₀ / I₂

This equation shows that the ratio of the moment of inertia of the first disk to the moment of inertia of the second disk determines the resulting angular speed after they come into contact. If the first disk has a larger moment of inertia, it will transfer more of its angular speed to the second disk, resulting in a lower final angular speed. Conversely, if the second disk has a larger moment of inertia, it will absorb more angular speed from the first disk, resulting in a higher final angular speed.

To know more about angular speed

https://brainly.com/question/29058152

#SPJ11

A closely wound circular coil of 70 turns has a radius of 25 cm. The plane of the coil is rotated from a position where it makes an angle of 45.0° with a magnetic field of 2.30 T to a position parallel to the field. The rotation takes 0.120 s. What is the magnitude of the average emf induced in the coil during the rotation?

Answers

The task is to determine the magnitude of the average electromotive force (emf) induced in a closely wound circular coil during a rotation from an angle of 45.0° to a position parallel to a magnetic field. The coil has 70 turns and a radius of 25 cm. The rotation takes 0.120 s.

When a coil rotates in a magnetic field, an emf is induced in the coil according to Faraday's law of electromagnetic induction. The magnitude of the induced emf can be calculated using the formula:

emf = NΔΦ/Δt,

where N is the number of turns in the coil, ΔΦ is the change in magnetic flux, and Δt is the time taken for the rotation.

In this case, the coil initially makes an angle of 45.0° with the magnetic field and is then rotated to a position parallel to the field. The change in magnetic flux, ΔΦ, is given by the product of the magnetic field strength, B, the area of the coil, A, and the cosine of the angle between the normal to the coil and the magnetic field direction:

ΔΦ = B A cosθ.

Since the coil is closely wound and has a circular shape, the area of the coil is πr^2, where r is the radius of the coil.

Substituting the given values of N = 70 turns, B = 2.30 T, r = 25 cm, θ = 45.0°, and Δt = 0.120 s into the equations, we can calculate the magnitude of the average emf induced in the coil during the rotation.

Learn more about electromotive here:

https://brainly.com/question/820393

#SPJ11

625 C passes through a flashlight in 0.460 h. What is the
average current?

Answers

625 C passes through a flashlight in 0.460 h. the average current passing through the flashlight is approximately 0.377 A.

To calculate the average current, we need to use the formula:

Average Current (I) = Total Charge (Q) / Time (t)

In this case, we are given that a total charge of 625 C passes through the flashlight. The time is given as 0.460 hours.

First, we need to convert the time from hours to seconds since the unit of current is in amperes (A), which is defined as coulombs per second.

0.460 hours is equal to 0.460 x 60 x 60 = 1656 seconds.

Now we can calculate the average current:

I = 625 C / 1656 s

I ≈ 0.377 A

Therefore, the average current passing through the flashlight is approximately 0.377 A.

Average current is a measure of the rate at which charge flows through a circuit over a given time. In this case, the average current tells us how much charge, in coulombs, passes through the flashlight per second. It is an important parameter to consider when analyzing the behavior and performance of electrical devices.

Learn more about  current here:

https://brainly.com/question/32059694

#SPJ11

A thin rod has a length of 0.285 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.667 rad/s and a moment of inertia of 1.24 x 10-³ kg⋅m². A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5 x 10-³ kg) gets where it's going, what is the change in the angular velocity of the rod? Number Units

Answers

Given Data:

Length of thin rod = 0.285 m

Angular velocity of rod = 0.667 rad/s

Moment of inertia of rod = 1.24 x 10⁻³ kg⋅m²

Mass of bug = 5 x 10⁻³ kg

To calculate: Change in angular velocity of the rod

Formula: Iω1 = Iω2 + mr²ω2

Where, I = Moment of inertia

ω1 = Initial angular velocity

ω2 = Final angular velocity

m = Mass

r = Distance

I = 1.24 × 10⁻³ kg m²

ω1 = 0.667 rad/s

m = 5 × 10⁻³ kg

r = 0.285/2 = 0.1425 m (The distance of the bug from the centre)

Initial angular momentum of the rod and bug system, Iω1 = 1.24 × 10⁻³ × 0.667 = 8.268 × 10⁻⁴ kg⋅m²/s

When the bug starts moving to the other end of the rod, the moment of inertia of the system changes.

So, the final angular momentum of the rod and bug system will be different and will be given by the formula,

Iω2 + mr²ω2= Iω1

Where,

I = 1.24 × 10⁻³ kg m²

ω1 = 0.667 rad/s

m = 5 × 10⁻³ kg

r = 0.285 - 0.1425 = 0.1425 m (The distance of the bug from the initial position)

On substituting the values,

1.24 × 10⁻³ × ω2 + 5 × 10⁻³ × (0.1425)² × ω2

= 8.268 × 10⁻⁴ω2 (1.24 × 10⁻³ + 5 × 10⁻³ × 0.02030625)

= 8.268 × 10⁻⁴ ω2ω2

= 0.765 rad/s

Change in angular velocity = Final angular velocity - Initial angular velocity

= 0.765 - 0.667= 0.098 rad/s

Therefore, the change in angular velocity of the rod is 0.098 rad/s.

Learn more about moment of inertia here

https://brainly.com/question/14119750

#SPJ11

At what absolute temperature do the Celsius and Fahrenheit temperature scales give the same numerical value? What is the value? (include a minus sign if required.) The Celsius and Fahrenheit temperature scales give the same numerical value at an absolute temperature of The Celsius temperature is ∘C. The Fahrenheit temperature is

Answers

The Celsius temperature is -40 degrees Celsius, and the Fahrenheit temperature is also -40 degrees Fahrenheit at this absolute temperature.

To find the absolute temperature at which the Celsius and Fahrenheit scales give the same numerical value, we can set up an equation and solve for the unknown temperature. The relationship between Celsius (C) and Fahrenheit (F) temperatures is given by the equation:

F = (9/5)C + 32

Since we want the Celsius and Fahrenheit temperatures to be equal, we can set up the equation:

C = (9/5)C + 32

To solve for C, we can simplify the equation:

C - (9/5)C = 32

(5/5)C - (9/5)C = 32

(-4/5)C = 32

Now we can solve for C:

C = 32 × (-5/4)

C = -40

Therefore, the Celsius temperature is -40 degrees Celsius, and the Fahrenheit temperature is also -40 degrees Fahrenheit at this absolute temperature.

To know more about temperature

https://brainly.com/question/27944554

#SPJ4

You are in Antarctica at 80 ∘
South latitude and 120 ∘
West longitude. You are standing on an Ice sheet at elevation of 1,100 meters. The Ice has a density of 0.92 g/cm 3
and is underlain by bedrock with a density of 2.67 g/cm 3
. Calculate for the normal gravity, free-air and bouguer correction.

Answers

The normal gravity is approximately 9.780327 m/s². The free-air correction is approximately -0.308 m/s². The Bouguer correction is approximately -0.619 m/s².

1. Normal gravity (g₀):

At a latitude of 80°S, we can use the formula:

g₀ = 9.780327 * (1 + 0.0053024 * sin²φ - 0.0000058 * sin²2φ)

Substituting φ = -80° into the formula:

g₀ = 9.780327 * (1 + 0.0053024 * sin²(-80°) - 0.0000058 * sin²(-160°))

  = 9.780327 * (1 + 0.0053024 * 1 - 0.0000058 * 1)

  = 9.780327 m/s²

2. Free-air correction (Δg):

The free-air correction accounts for the decrease in gravitational acceleration with increasing elevation. The formula for the free-air correction is:

Δg = -g₀ * Δh / R

Δh = 1,100 meters

R ≈ 6,371,000 meters (approximate average radius of the Earth)

Substituting the values into the formula:

Δg = -9.780327 m/s² * 1,100 meters / 6,371,000 meters

  ≈ -0.308 m/s²

3. Bouguer correction (Δg_B):

The Bouguer correction takes into account the density contrast between the ice sheet and the underlying bedrock. The formula for the Bouguer correction is:

Δg_B = 2πG * Δρ * h

Δρ = density of ice - density of bedrock

    = 0.92 g/cm³ - 2.67 g/cm³

    = -1.75 g/cm³ (note: the negative sign indicates a density contrast)

Converting the density contrast to kg/m³:

Δρ = -1.75 g/cm³ * (1000 kg/m³ / 1 g/cm³)

    = -1750 kg/m³

h = 1,100 meters

Using the gravitational constant G = 6.67430 x 10⁻¹¹ m³/kg/s², we can substitute the values into the formula:

Δg_B = 2π * (6.67430 x 10⁻¹¹ m³/kg/s²) * (-1750 kg/m³) * 1100 meters

      = -0.619 m/s²

Therefore, the normal gravity is approximately 9.780327 m/s², the free-air correction is approximately -0.308 m/s², and the Bouguer correction is approximately -0.619 m/s².

Learn more about Bouguer correction here:

https://brainly.com/question/31459093

#SPJ11

Other Questions
A file has 1997 records of fixed-length. Each record has 113 bytes. Suppose the block size is 512 bytes, seek time is 30 msec, the average rotational delay is 10 msec, and the data transfer rate is 512 bytes/msec. (1) Calculate the blocking factor and the number of file blocks (2) Calculate the average time it takes to retrieve a record by doing a linear search on the file if the file blocks are stored on consecutive disk blocks. 1. Following SQL statement is used to view the structure(Schema) of a relation named EMPLOYEE.TrueFalseneed help asap.... Use propositional logic to prove that the argument is valid. Do not use truth tables (A + B) ^ (C V -B) ^(-D-->C) ^ A D Please use the following substitute operators during your quiz: ^: &v: I: !-->: -> Project: ChicaEil.A, is a popular fast-food store in America. The Problem with their store is that they receive tons of mobile orders every day, but they receive too many that they do not have enough food in stock to fulfill the orders. I need three different sets of codes along with a ERD crows foot model 1" code-write a code that between 8 pm - 9pm, Cois-Fil-A will limit orders to only 40 mobile orders, and after 9 pm, only a total of 30 mobile orders will be taken 2nd code: Write a code that shows 100% of mobile orders will be taken before 8 PM 3rd code-write a code that shows how much food is in stock throughout the day. For example, write a code that shows the amount of chicken the store is losing in stock throughout the day, write a code that shows the Mac and Cheese supply going down throughout the day from 100%-0%, show a code of Drinks (Pepsi, Sprite, Dr. Pepper) supply going down throughout the day ndFlipcePart A:Which statement best explains how the two brothers in Ellis'sstory are different from one another?A.One has found a career in which he is successful, andthe other is still searching for fulfillment.B.One has a strong religious faith, while the other hasmany doubts.C.One preaches every week, while the other never gets achance to preach at all.D.One values gaining wealth, and the other is notinterested in acquiring material possessions. A matter's phase is determined by the free energy of a system. However, there are apparent exceptions to these rules. When an over-saturated aqueous salt solution is brought below its freezing point at a slow rate, the mixture maintains a liquid appearance and texture. Which of the following statement can properly explain the phenomenon? a. The salt solution is a mixture, so it cannot be described using phase diagrams. b. The entropy of the salt solution is too high, so it is impossible for the Gibbs free energy for phase transition to fall below zero. c. The salt molecules form local orderly clusters that drastically lower the entropy, so it is impossible to freeze a salt saturated aqueous solution. d. The free energy values provide information on spontaneity, but the freezing process is simply too slow Two centrifugal pumps are operated in parallel manner at a given pipeline system, the pressure head is that achieved by using a single pump. B) almost close to A) twice C) actually less than twice D) much higher than twice. 1. (25 points) Air is flowing in a tube (ID=0.08m, L=30m) with a rate of 0.5 m/s for heating from 50 C to 100C. Use the properties: Pair=1.5 kg/m, Cpair=0.432 J/gC, air=0.03 cP, kair=0.028 W 23. The aspect of religious practice that according to research is likely to exert the strongest effect on well-being is:the social support gained from belonging to a community of worshippersadhering to the specific health and dietary practices that are part of your religious observancebeing able to "turn problems over to God" and having an extrinsic religious orientationThe ability of religion to provide a sense of meaning, purpose, and coherence(INCORRECT) Explain the difference between Abilities and faithsExplain why income inequality is a problem in the United States and the worldExplain the rising concerns about the corporate treatment and animalsHow would you decide whether an employee was taking advantage if an absenteeism policy A single-turn square loop carries a current of 19 A . The loop is 15 cm on a side and has a mass of 3.6102 kg . Initially the loop lies flat on a horizontal tabletop. When a horizontal magnetic field is turned on, it is found that only one side of the loop experiences an upward force.Find the minimum magnetic field, Bmin , necessary to start tipping the loop up from the table in mT. Submissions > 2.3 List of Indicators 2.3 List of Indicators Hide Folder Information Instructions Write a list of 5-7 indicators of good photography that includes short descriptions of each. Submit your work to this Dropbox. if you apply the changes below to the quadratic pareent function, F(x)=x^2 what is the equation of the new function? shift 6 units right. shift 4 units down. Which compound is ionic? a)ICl b)HClO_4c)NCl_3d)MgSO_4 Whats equivalent to 6 to the -3 power During testing of a new type of membrane filter for the treatment of drinking water, bacteriophage concentrations of 10 mL-1 and 10 mL-1 were measured in the raw surface water and treated water, respectively. Calculate the following: (1) the percent reduction, (2) the corresponding log reduction values and (3) briefly discuss the advantages and disadvantages of using a membrane technology to provide disinfection compared to the current use of chlorine in drinking water treatment plants. spectroscopy?would appreciate if you answered all.CUA (OX) + eCUA (red) Only the oxidised form of this site gives rise to an EPR active signal as well as the optical band observed at 830 nm. The intensity of these signals varies as a function of elec Zoologists and studying the population of trout fish in a lake. The function f (t) = 490 (0.96)^t represents the number of trout in the lake after t years. What is the yearly percent change? In order to control the speed and precision of a robotic arm for the manufacturing industry, consider the block diagram representation for a causal LTI system S with input x(t), output y(t), and system function H(s) = 2s+145-16 s+65+5 Consider a causal LTI system s; that has the same input x(t) as S, but whose system function is H (s) = CHAKELAJUAN s +65 +5 denoted by With the output of s denoted by y, (t), the direct-form block diagram representation of s, is shown in Figure 1. The signals e(t) and f(t) indicated in the figure represent respective inputs into the two integrators. e(t) f(t) x(t) y (t) -6 -5 Rajah 1/ Figure 1 a. Express y(t) (the output of S) as a linear combination of dy, (t)/dt and dy (t)/ dt. Then, identify y(t) as a linear combination of e(t), f(t) and y (t). (2 markah/ marks) 2/3 SIT 115 b. Use the result from (a) to extend the direct-form block diagram representation of S and sketch a block diagram representation of S. (2 markah / marks) C. Re-arrange the system function H(s) to sketch 2 different block diagram representations of S based on cascade combination and parallel combination of subsystems. (3 markah/ marks) d. Explain whether the proposed feedback system is a good solution or not in controlling the speed and precision of the robotic arm. (3 markah/ marks) 5. With a neat diagram explain about the Ratio control with a suitable example on any parameter to be control in a chemical process