A boat leaves a marina and travels due south for 1 hr. The boat then changes course to a bearing of S47°E and travels for another 2 hr. a. If the boat keeps a constant speed of 15 mph, how far from the marina is the boat after 3 hr? Round to the nearest tenth of a mile. b. Find the bearing from the boat back to the marina. Round to the nearest tenth of a degree.

Answers

Answer 1

After 3 hours, the boat is approximately 16.43 miles from the marina, and the bearing from the boat back to the marina is approximately 209.9°

We have,

To solve this problem, we can break down the boat's motion into two components: north-south displacement and east-west displacement.

Given:

The boat travels due south for 1 hour at a constant speed of 15 mph.

The boat then changes course to a bearing of S47°E and travels for 2 hours at the same constant speed of 15 mph.

a.

To find how far the boat is from the marina after 3 hours, we need to calculate the total displacement using the Pythagorean theorem.

First, let's find the north-south displacement:

Distance = Speed x Time = 15 mph x 1 hour = 15 miles

Next, let's find the east-west displacement using the given bearing:

Angle of S47°E = 180° - 47° = 133°

Using trigonometry, we can find the east-west displacement:

East-West Displacement = Distance x cos(Angle) = 15 miles x cos(133°)

Now, let's calculate the total displacement:

Total Displacement = √(North-South Displacement² + East-West Displacement²)

b.

To find the bearing from the boat back to the marina, we can use trigonometry to calculate the angle between the displacement vector and the north direction.

Let's calculate the values:

a. North-South Displacement = 15 miles

b. East-West Displacement = 15 miles x cos(133°)

c. Total Displacement = sqrt(North-South Displacement² + East-West Displacement²)

b. Bearing = atan(East-West Displacement / North-South Displacement) + 180°

Now, let's perform the calculations:

a. North-South Displacement = 15 miles

b. East-West Displacement = 15 miles x cos(133°) ≈ -6.83 miles (rounded to two decimal places)

c. Total Displacement = √(15² + (-6.83)²) ≈ 16.43 miles (rounded to two decimal places)

b.

Bearing = atan(-6.83 / 15) + 180° ≈ 209.9° (rounded to one decimal place)

Therefore,

After 3 hours, the boat is approximately 16.43 miles from the marina, and the bearing from the boat back to the marina is approximately 209.9°

Learn more about expressions here:

https://brainly.com/question/3118662

#SPJ12


Related Questions

Given: A_n = 30/3^n Determine: (a) whether sigma _n = 1^infinity (A_n) is convergent. _____
(b) whether {An} is convergent. _____
If convergent, enter the limit of convergence. If not, enter DIV.

Answers

As n increases, 3^n becomes larger, making the fraction 30/3^n approach zero. Therefore, the sequence {A_n} is convergent, and the limit of convergence is 0. (a) Σ(A_n) is convergent and (b) {A_n} is convergent with the limit of convergence equal to 0.

(a) To determine whether sigma _n = 1^infinity (A_n) is convergent, we need to take the sum of the sequence A_n from n=1 to infinity:
sigma _n = 1^infinity (A_n) = A_1 + A_2 + A_3 + ...
Substituting A_n = 30/3^n, we get:
sigma _n = 1^infinity (A_n) = 30/3^1 + 30/3^2 + 30/3^3 + ...
To simplify this, we can factor out a common factor of 30/3 from each term:
sigma _n = 1^infinity (A_n) = 30/3 * (1/3^0 + 1/3^1 + 1/3^2 + ...)
Now, we recognize that the expression in parentheses is a geometric series with first term a=1 and common ratio r=1/3. The sum of an infinite geometric series with first term a and common ratio r is:
sum = a / (1 - r)
Applying this formula to our series, we get:
sigma _n = 1^infinity (A_n) = 30/3 * (1/ (1 - 1/3)) = 30/2 = 15
Therefore, sigma _n = 1^infinity (A_n) is convergent, with a limit of 15.
(b) To determine whether {An} is convergent, we need to take the limit of the sequence A_n as n approaches infinity:
lim n->infinity (A_n) = lim n->infinity (30/3^n) = 0
Therefore, {An} is convergent, with a limit of 0.
(a) To determine if the series Σ(A_n) from n=1 to infinity is convergent, we can use the ratio test. The ratio test states that if the limit as n approaches infinity of the absolute value of the ratio A_(n+1)/A_n is less than 1, the series converges.
For A_n = 30/3^n, we have:
A_(n+1) = 30/3^(n+1)
Now let's find the limit as n approaches infinity of |A_(n+1)/A_n|:
lim(n→∞) |(30/3^(n+1))/(30/3^n)| = lim(n→∞) |(3^n)/(3^(n+1))| = lim(n→∞) |1/3|
Since the limit is 1/3, which is less than 1, the series Σ(A_n) converges.
(b) To determine if the sequence {A_n} is convergent, we need to find the limit as n approaches infinity:
lim(n→∞) (30/3^n)
As n increases, 3^n becomes larger, making the fraction 30/3^n approach zero. Therefore, the sequence {A_n} is convergent, and the limit of convergence is 0.


To learn more about limit of convergence, click here:

brainly.com/question/31402403

#SPJ11

evaluate the integral taking ω:0≤x≤1,0≤y≤4 ∫∫2xy^2dxdy

Answers

The value of the integral ∫∫R 2xy^2 dA over the given region R is 64/3.

To evaluate the integral ∫∫R 2xy^2 dA over the region R given by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 4, we integrate with respect to x first, and then with respect to y:

∫∫R 2xy^2 dA = ∫[0,4] ∫[0,1] 2xy^2 dx dy

Integrating with respect to x, we get:

∫[0,4] ∫[0,1] 2xy^2 dx dy = ∫[0,4] (y^2) [x^2]0^1 dy

Simplifying the expression inside the integral, we get:

∫[0,4] (y^2) [x^2]0^1 dy = ∫[0,4] y^2 dy

Integrating with respect to y, we get:

∫[0,4] y^2 dy = [y^3/3]0^4

Substituting the limits of integration and simplifying, we get:

[y^3/3]0^4 = (4^3/3) - (0^3/3) = 64/3

Therefore, the value of the integral ∫∫R 2xy^2 dA over the given region R is 64/3.

To learn more about Simplifying visit:

https://brainly.com/question/28770219

#SPJ11

Help please!
5/8 ÷ 1/8​

Answers

Answer: 5

5/8/1/8, you can do 5x8 and also do 8x1 because you can not divide fractions after that you get 40/8 then you divide 40/8 is 5 so the answer is 5

The answer to 5/8 divided by 1/8 equal 5 1
- divided - = 5/8
8. 8

The point p(4,-2) Is dialated by a scale factor of 1.5 about the point (0,-2) The resluting point is point q. what are the points of q ,A(5.5, -2), B(5.5, -3.5), C(6,-2), D(6,-3)

Answers

The point Q after dilation with a scale factor of 1.5 about the point (0, -2) is (6, -2). So, correct option is C.

To find the new coordinates of point P after dilation with a scale factor of 1.5 about the point (0, -2), we can use the following formula:

Q(x, y) = S(x, y) = (1.5(x - 0) + 0, 1.5(y + 2) - 2)

Substituting the coordinates of point P (4, -2), we get:

Q(x, y) = S(4, -2) = (1.5(4 - 0) + 0, 1.5(-2 + 2) - 2)

Q(x, y) = S(4, -2) = (6, -2)

Therefore, the new point after dilation is Q(6, -2).

To check which of the given points A, B, C, and D match the new point Q, we can compare their coordinates. Only point C(6, -2) matches the new point Q, so that must be the answer. Points A, B, and D do not match the new point.

So, correct option is C.

To learn more about dilation click on,

https://brainly.com/question/31009831

#SPJ1

[infinity]consider the series ∑ 1/n(n+2)n=1 determine whether the series converges, and if it converges, determine its value.Converges (y/n) = ___Value if convergent (blank otherwise = ____

Answers

The value of the series is: ∑ 1/n(n+2) = lim N→∞ S(N) = 1/2.

The series ∑ 1/n(n+2)n=1 converges. To determine its value, we can use the partial fraction decomposition:

1/n(n+2) = 1/2 * (1/n - 1/(n+2))

Using this decomposition, we can rewrite the series as:

∑ 1/n(n+2) = 1/2 * (∑ 1/n - ∑ 1/(n+2))

The first series ∑ 1/n is the harmonic series, which diverges. However, the second series ∑ 1/(n+2) is a shifted version of the harmonic series, and it also diverges. But since we are subtracting a divergent series from another divergent series, we can use the limit comparison test to determine whether the original series converges or diverges. Specifically, we can compare it to the series ∑ 1/n, which we know diverges. This gives:

lim n→∞ 1/n(n+2) / 1/n = lim n→∞ (n+2)/n^2 = 0

Since the limit is less than 1, we can conclude that the series ∑ 1/n(n+2) converges. To find its value, we can evaluate the partial sums:

S(N) = 1/2 * (∑_{n=1}^N 1/n - ∑_{n=1}^N 1/(n+2))
    = 1/2 * (1/1 - 1/3 + 1/2 - 1/4 + ... + 1/(N-1) - 1/(N+1))

As N approaches infinity, the terms in the parentheses cancel out except for the first and last terms:

S(N) → 1/2 * (1 - 1/(N+1))

Learn more about parentheses here: brainly.com/question/28146414

#SPJ11

prove that x2 2: x for all x e z.

Answers

We have demonstrated that x² ≥ x for all integers x. Therefore, the statement x² ≥ x for all x ∈ Z is true.

What is inequality?

An inequality is a relation that compares two numbers or other mathematical expressions in an unequal way. The majority of the time, size comparisons between two numbers on the number line are made.

To prove that x² ≥ x for all x ∈ Z, we need to show that the inequality holds true for any arbitrary integer value of x.

We can prove this by considering two cases:

Case 1: x ≥ 0

If x ≥ 0, then x² ≥ 0 and x ≥ 0. Therefore, x² ≥ x.

Case 2: x < 0

If x < 0, then x² ≥ 0 and x < 0. Therefore, x² > x.

In either case, we have shown that x² ≥ x for all integers x. Therefore, the statement x² ≥ x for all x ∈ Z is true.

Learn more about inequality on:

https://brainly.com/question/17448505

#SPJ11

s it possible that ca = i4 for some 4 ×2 matrix c? why or why not?

Answers

No, it is not possible that CA = I4 for some 4 × 2 matrix C, where A is a 4 × 2 matrix and I4 is the 4 × 4 identity matrix.



1. Recall that the identity matrix I4 is a 4 × 4 matrix with ones on the diagonal and zeros elsewhere.

2. In matrix multiplication, the number of columns in the first matrix must equal the number of rows in the second matrix.

3. If C is a 4 × 2 matrix and A is a 4 × 2 matrix, then matrix multiplication CA results in a 4 × 2 matrix, as the number of rows in C (4) and the number of columns in A (2) determine the dimensions of the resulting matrix.

4. Since CA produces a 4 × 2 matrix, it cannot be equal to the 4 × 4 identity matrix I4, as the dimensions are not the same.

Therefore, it is not possible for CA = I4 for some 4 × 2 matrix C.

learn more on the 4*2 matrix: https://brainly.com/question/31489259

#SPJ11

The following table gives the mean and standard deviation of reaction times in seconds) for each of two different stimuli, Stimulus 1 Stimulus 2 Mean 6.0 3.2 Standard Deviation 1.4 0.6 If your reaction time is 4.2 seconds for the first stimulus and 1.8 seconds for the second stimulus, to which stimulus are you reacting (compared to other individuals) relatively more quickly?

Answers

z-score for Stimulus 2 (-2.33) is more negative than the z-score for Stimulus 1 (-1.29), you are reacting relatively more quickly to Stimulus 2 compared to other individuals.

How to determine to which stimulus you are reacting relatively more quickly?

We need to calculate the z-scores for your reaction times for each stimulus.

For Stimulus 1:

z-score = (your reaction time - mean reaction time for Stimulus 1) / standard deviation for Stimulus 1

z-score = (4.2 - 6.0) / 1.4

z-score = -1.29

For Stimulus 2:

z-score = (your reaction time - mean reaction time for Stimulus 2) / standard deviation for Stimulus 2

z-score = (1.8 - 3.2) / 0.6

z-score = -2.33

The more negative the z-score, the farther away your reaction time is from the mean.

Therefore, since the z-score for Stimulus 2 (-2.33) is more negative than the z-score for Stimulus 1 (-1.29), you are reacting relatively more quickly to Stimulus 2 compared to other individuals.

Learn more about z-score.

brainly.com/question/15016913

#SPJ11

a right circular cone is generated by revolving the region bounded by y = 3x/4, y = 3, and x = 0 about the y-axis. find the lateral surface area of the cone.

Answers

The lateral surface area of the cone is 20π square units.

To find the lateral surface area of a right circular cone generated by revolving the region bounded by y = 3x/4, y = 3, and x = 0 about the y-axis, we need to follow these steps,

1. Find the height and slant height of the cone.
2. Use the formula for the lateral surface area of a cone: LSA = πr * l, where r is the radius and l is the slant height.

Find the height and slant height of the cone.
The equation of the line is y = 3x/4. We are given that y = 3, so we can solve for x:
3 = 3x/4
x = 4

Thus, the height (h) of the cone is 3, and the base radius (r) is 4. To find the slant height (l), we can use the Pythagorean theorem:
l² = h² + r²
l² = 3² + 4²
l² = 9 + 16
l² = 25
l = 5

Use the formula for the lateral surface area of a cone.
LSA = πr * l
LSA = π(4) * (5)
LSA = 20π

The lateral surface area of the cone is 20π square units.

Learn more about "surface area": https://brainly.com/question/29298005

#SPJ11

x is an erlang (n,λ) random variable with parameter λ = 1/3 and expected value e[x] = 15. (a) what is the value of the parameter n? (b) what is the pdf of x? (c) what is var[x]?

Answers

The pdf of x is f(x) = (x^4 * e^(-x/3)) / 1620.

the variance of x is var[x] = 45.

(a) Since x is an Erlang (n, λ) random variable with expected value e[x] = 15 and λ = 1/3, we have:

e[x] = n/λ = n/(1/3) = 3n

Therefore, we have:

3n = 15

n = 5

So the value of the parameter n is 5.

(b) The probability density function (pdf) of an Erlang (n, λ) random variable is given by:

f(x) = (λ^n * x^(n-1) * e^(-λx)) / (n-1)!

Substituting λ = 1/3 and n = 5, we have:

f(x) = (1/3)^5 * x^4 * e^(-x/3) / 4!

        = (x^4 * e^(-x/3)) / 1620

Therefore, the pdf of x is f(x) = (x^4 * e^(-x/3)) / 1620.

(c) The variance of an Erlang (n, λ) random variable is given by:

var[x] = n/λ^2 = n/(1/λ)^2

Substituting λ = 1/3 and n = 5, we have:

var[x] = 5/(1/(1/3))^2

        = 45

Therefore, the variance of x is var[x] = 45.

Visit to know more about PDF:-

brainly.com/question/15714810

#SPJ11

For two programs at a university, the type
of student for two majors is as follows.

Find the probability a student is a science major,
given they are a graduate student.

Answers

Answer:

Step-by-step explanation:

To find the probability that a student is a science major given that they are a graduate student, we need to use Bayes' theorem:

P(Science | Graduate) = P(Graduate | Science) * P(Science) / P(Graduate)

We know that P(Science) = 0.45 and P(Liberal Arts) = 0.55, and that P(Graduate | Science) = 0.35 and P(Graduate | Liberal Arts) = 0.25. We also know that the total probability of being a graduate student is:

P(Graduate) = P(Graduate | Science) * P(Science) + P(Graduate | Liberal Arts) * P(Liberal Arts)

Plugging in the values, we get:

P(Graduate) = 0.35 * 0.45 + 0.25 * 0.55 = 0.305

Now we can calculate the probability of being a science major given that the student is a graduate student:

P(Science | Graduate) = 0.35 * 0.45 / 0.305 = 0.515

Therefore, the probability that a student is a science major, given they are a graduate student, is approximately 0.515.

Answer:

0.72

Step-by-step explanation:

trust me

Solve for triangle Above

Answers

Answer:

X = 24.4

Step-by-step explanation:

for the triangle we use sin b/c it contain both hyp and opposite so

sin(35°) = 14/x

sin(35) × X = 14

X = 14 / (sin(35)

X = 24.4 ... it is the answer of hypotenus of the

triangle

Answer:

Step-by-step explanation:

Write the equation in standard form for the circle passing through (–8,4) centered at the origin.

Answers

Answer:

x² + y² = 80

Step-by-step explanation:

Pre-Solving

We are given that a circle has the center at the origin (the point (0,0)) and passes through the point (-8,4).

We want to write the equation of this circle in the standard equation. The standard equation is (x-h)² + (y-k)² = r² where (h,k) is the center and r is the radius.

Solving

As we are given the center, we can plug its values into the equation.

Substitute 0 as h and 0 as k.

(x-0)² + (y-0)² = r²

This becomes:

x² + y² = r²

Now, we need to find r².

As the circle passes through (-8,4), we can use its values to help solve for r².

Substitute -8 as x and 4 as y.

(-8)² + (4)² = r²

64 + 16 = r²

80 = r²

Substitute 80 as r².

x² + y² = 80

I think I understand how to do this but the answer I think it is goes past the graph?

Answers

The other root of the quadratic equation include the following (-4, 0).

What is the vertex form of a quadratic equation?

In Mathematics and Geometry, the vertex form of a quadratic equation is given by this formula:

y = a(x - h)² + k

Where:

h and k represents the vertex of the graph.a represents the leading coefficient.

For the given quadratic function, we have;

y = a(x - h)² + k

0 = a(8 - 2)² - 5

0 = 36a - 5

5 = 36a

a = 5/36

Therefore, the required quadratic function in vertex form is given by;

y = 5/36(x - 2)² - 5

0 = 5/36(x - 2)² - 5

5 = 5/36(x - 2)²

36 = (x - 2)²

±6 = x - 2

x = -6 + 2

x = -4.

Other root = (-4, 0).

Read more on vertex here: https://brainly.com/question/30945046

#SPJ1

(b) region r is the basRegion R is the base of a soli., each cross section perpendicular to the x axis is a semi circle. Write, but do not evaluate, an integral expression that would compute the volume of the solid
of a

Answers

An integral expression that would compute the volume of the solid is [tex]V = \int\limits^a_b {1/2 \pi [R(x)]^2} \, dx[/tex]

What is integral expression?

An integral expression is a mathematical statement that represents the area under a curve or the volume of a solid in three-dimensional space. It is written using integral notation, which involves an integral sign, a function to be integrated, and limits of integration.

According to given information:

If each cross section perpendicular to the x-axis is a semicircle, then the radius of each cross section depends on the x-coordinate of the center of the cross section. Let R(x) be the radius of the cross section at x.

To find the volume of the solid, we can integrate the area of the cross section over the interval of x that defines the base R. The area of each cross section is given by the formula for the area of a semicircle:

[tex]A(x) = (1/2)[/tex][tex]\pi[R(x)]^2[/tex]

The volume of the solid can be found by integrating A(x) over the base R:

[tex]V = \int\limits^a_b {1/2 \pi [R(x)]^2} \, dx[/tex]

where a and b are the limits of integration for x that define the base R.

Note that we are integrating with respect to x, so we need to express the radius R(x) in terms of x.

To know more about integral expression visit:

https://brainly.com/question/1859113

#SPJ1

There are four blood types, and not all are equally likely
to be in blood banks. In a certain blood bank, 49% of
donations are Type O blood, 27% of donations are Type
A blood, 20% of donations are Type B blood, and 4% of
donations are Type AB blood. A person with Type B
blood can safely receive blood transfusions of Type O
and Type B blood.
What is the probability that the 4th donation selected at
random can be safely used in a blood transfusion on
someone with Type B blood?
O (0.31)³(0.69)
O (0.51)³(0.49)
O (0.69)³(0.31)
O (0.80)³(0.20)

Answers

Answer:

The probability of the 4th donation being Type O or Type B is:

P(Type O or B) = P(Type O) + P(Type B) = 0.49 + 0.20 = 0.69

The probability of the 4th donation being safe for someone with Type B blood is the probability that it is Type O or Type B, which is 0.69. Therefore, the probability that the 4th donation selected at random can be safely used in a blood transfusion on someone with Type B blood is:

P(safe for Type B) = 0.69

Answer: (0.69)³(0.31)

Please solve this geometry problem.

Answers

hope this helps you .

2. find the angle in the figure in both radion measure and
angle measure.
ест
6
5cm

Answers

The measure of the central angle is 86 degrees.

How to find the central angle?

The length of the arc is 9 cm and the radius is 6 centimetres. Therefore, let's find the central angle as follows:

Hence,

length of an arc = ∅ / 360 × 2πr

where

r = radius∅ = central angle

Therefore,

length of arc = 9 cm

radius = 6 cm

Therefore,

9 = ∅ / 360 × 2 × 3.14 × 6

9 = 37.68∅ / 360

cross multiply

3240 = 37.68∅

divide both sides by 37.68

∅ = 3240 / 37.68

∅ = 85.9872611465

∅ = 86 degrees.

learn more on central angle here: https://brainly.com/question/12896852

#SPJ1

Find an equation of the tangent line to the curve y=8x at the point (2,64)

Answers

Equation of the tangent line to the curve y=8x is y = 8x + 48.

How do we need to find the slope of the tangent at that point?

Derivative of the curve, we get:

dy/dx = 8

This means that the slope of the tangent line to the curve at any point is 8.

So, at the point (2,64), the slope of the tangent line is 8.

By point-slope form of a line, we will find the equation of the tangent line:

y - y1 = m(x - x1)

where m is the slope and (x1,y1) is the given point.

Plugging in the values, we get:

y - 64 = 8(x - 2)

Simplifying, we get:

y = 8x + 48

Equation of the tangent line to the curve y=8x at the point (2,64) is y = 8x + 48.

Learn more about tangent line.

brainly.com/question/31326507

#SPJ11

Write a formula for a two-dimensional vector field which has all vectors of length 1 and perpendicular to the position vector at that point.

Answers

We can define the vector field as:F(x,y) = v = ⟨−y,x⟩/√(x²+y²).

This vector field satisfies the conditions that all vectors have length 1 and are perpendicular to the position vector at each point

What are perpendicular lines?

Perpendicular lines are lines that intersect at a right angle (90 degrees).

Let's consider a two-dimensional vector field, denoted by F(x,y), where F is a vector function of two variables x and y. We want all vectors in this field to have length 1 and to be perpendicular to the position vector at each point.

The position vector at a point (x,y) is given by r = x, y , so we need to find a vector that is perpendicular to r and has length 1. One such vector is \ -y, x .

To make sure that all vectors in the field have length 1, we can normalize this vector by dividing it by its magnitude:

v = ⟨−y,x⟩/√(x²+y²).

Finally, we can define the vector field as:

F(x,y) = v = ⟨−y,x⟩/√(x²+y²).

This vector field satisfies the conditions that all vectors have length 1 and are perpendicular to the position vector at each point.

To learn more about perpendicular lines from the given link:

https://brainly.com/question/18271653

#SPJ1

We can define the vector field as:F(x,y) = v = ⟨−y,x⟩/√(x²+y²).

This vector field satisfies the conditions that all vectors have length 1 and are perpendicular to the position vector at each point

What are perpendicular lines?

Perpendicular lines are lines that intersect at a right angle (90 degrees).

Let's consider a two-dimensional vector field, denoted by F(x,y), where F is a vector function of two variables x and y. We want all vectors in this field to have length 1 and to be perpendicular to the position vector at each point.

The position vector at a point (x,y) is given by r = x, y , so we need to find a vector that is perpendicular to r and has length 1. One such vector is \ -y, x .

To make sure that all vectors in the field have length 1, we can normalize this vector by dividing it by its magnitude:

v = ⟨−y,x⟩/√(x²+y²).

Finally, we can define the vector field as:

F(x,y) = v = ⟨−y,x⟩/√(x²+y²).

This vector field satisfies the conditions that all vectors have length 1 and are perpendicular to the position vector at each point.

To learn more about perpendicular lines from the given link:

https://brainly.com/question/18271653

#SPJ1

find the partial derivatives of the function f(x,y)=xye−9y

Answers

The partial derivatives of the function f(x,y) = xy*e^(-9y) with respect to x and y are: ∂f/∂x = ye^(-9y), and ∂f/∂y = x(-9y*e^(-9y)) + e^(-9y).

The first partial derivative concerning x is obtained by treating y as a constant and differentiating concerning x. The result is ye^(-9y), which means that the rate of change of f concerning x is equal to ye^(-9y).

The second partial derivative concerning y is obtained by treating x as a constant and differentiating concerning y. The result is x(-9ye^(-9y)) + e^(-9y), which means that the rate of change of f concerning y is equal to x times -9ye^(-9y) plus e^(-9y).

To better understand these partial derivatives, we can analyze the behavior of the function f(x,y) = xy*e^(-9y). As we can see, the function is the product of three terms: x, y, and e^(-9y). The term e^(-9y) represents a decreasing exponential function that approaches zero as y increases. Therefore, the value of f(x,y) decreases as y increases. The terms x and y represent a linear function that increases as x and y increase. Therefore, the value of f(x,y) increases as x and y increase.

To learn more about Derivatives, visit:

https://brainly.com/question/23819325

#SPJ11

Describe the domain and range of the following exponential function.
Exponential Function
f(x) = 2
f(x)
9
8
6-5-4-3-2-19 12
O Domain: y> 0
No No
O Domain: All real numbers
Range:All real numbers
Range: All real numbers
O Domain:x>2
Range: y 1
O Domain: All real numbers
Range: y0

Answers

Therefore, the domain of f(x) = 2ˣ is: All real numbers And the range of f(x) = 2ˣ is: y > 0.

How to Determine a Function's Domain and Scope?

We must look for the set of all possible values of x that do not result in the function being undefined in order to determine the domain of the function y = f(x). The usual examples are taking the square root of negative integers, dividing by 0, etc.

The given exponential function is f(x) = 2ˣ.

The domain of an exponential function is all real numbers, since any real number can be raised to a power.

The range of the function is all positive real numbers, since 2 raised to any power will always be positive and approach zero as x approaches negative infinity.

Therefore, the domain of f(x) = 2ˣ is: All real numbers

And the range of f(x) =2ˣ is: y > 0

To know more about domain visit:-

https://brainly.com/question/28135761

#SPJ1

3.48 Referring to Exercise 3.39, find
(a) f(y|2) for all values of y;
(b) P(Y = 0 | X = 2).
this is 3.39
3.39 From a sack of fruit containing 3 oranges, 2 apples, and 3 bananas, a random sample of 4 pieces of fruit is selected. If X is the number of oranges and Y is the number of apples in the sample, find (a) the joint probability distribution of X and Y ; (b) P[(X, Y ) ∈ A], where A is the region that is given by {(x, y) | x + y ≤ 2}.

Answers

Referring to Exercise 3.39,

(a) f(y|2) for all values of y is f(2|2) = P(Y=2|X=2) = P(X=2, Y=2) / P(X=2) = (1/14) / (3/14) = 1/3

(b) P(Y = 0 | X = 2) = 1

To find f(y|2), we need to first calculate the conditional probability of Y=y given that X=2, which we can do using the joint probability distribution we found in part (a) of Exercise 3.39:
P(Y=y|X=2) = P(X=2, Y=y) / P(X=2)
We know that P(X=2) is equal to the probability of selecting 2 oranges out of 4 fruits, which can be calculated using the hypergeometric distribution:
P(X=2) = (3 choose 2) * (2 choose 0) / (8 choose 4) = 3/14
To find P(X=2, Y=y), we need to consider all the possible combinations of selecting 2 oranges and y apples out of 4 fruits:
P(X=2, Y=0) = (3 choose 2) * (2 choose 0) / (8 choose 4) = 3/14
P(X=2, Y=1) = (3 choose 2) * (2 choose 1) / (8 choose 4) = 3/14
P(X=2, Y=2) = (3 choose 2) * (2 choose 2) / (8 choose 4) = 1/14
Therefore, f(y|2) is:
f(0|2) = P(Y=0|X=2) = P(X=2, Y=0) / P(X=2) = (3/14) / (3/14) = 1
f(1|2) = P(Y=1|X=2) = P(X=2, Y=1) / P(X=2) = (3/14) / (3/14) = 1
f(2|2) = P(Y=2|X=2) = P(X=2, Y=2) / P(X=2) = (1/14) / (3/14) = 1/3
To find P(Y=0|X=2), we can use the conditional probability formula again:
P(Y=0|X=2) = P(X=2, Y=0) / P(X=2) = 3/14 / 3/14 = 1
Therefore, P(Y=0|X=2) = 1.

To learn more about conditional probability, refer:-

https://brainly.com/question/30144287

#SPJ11

using homework 10 data: using α = .05, p = 0.038 , your conclusion is _________.

Answers

Hi! Based on the information provided, using homework 10 data with a significance level (α) of 0.05 and a p-value of 0.038, your conclusion is that you would reject the null hypothesis.

This is because the p-value (0.038) is less than the significance level (0.05), indicating that there is significant evidence to suggest that the alternative hypothesis is true. Therefore, the conclusion is made based on the evidence to suggest that there is a statistically significant difference between the groups being compared in the study analyzed in homework 10.

To learn more about the topic:

https://brainly.com/question/4436370

#SPJ11

MJ Supply distributes bags of dog food to pet stores. Its markup rate is 28%. Which equation represents the new price of a bag, y, given an original price, p?


y=0. 72p


y=1. 28p


y=p−0. 72


y=p+1. 28

Answers

The equation representing the new price with the 28% markup is y = 1.28p.

The equation that represents the new price of a bag, y, given an original price, p, with a markup rate of 28% is:

y = 1.28p

This equation is derived as follows:

Convert the markup rate to a decimal by dividing by 100:

28% / 100 = 0.28

Add 1 to the decimal markup rate:

1 + 0.28 = 1.28

Multiply the original price by the result:

y = p × 1.28

So, the equation representing the new price with the 28% markup is y = 1.28p.

for such more question on word problem

https://brainly.com/question/21405634

#SPJ11

Find a basis for the set of vectors in R2 on the line y 19x. A basis for the set of vectors in R2 on the line y 19x is (Use a comma to separate vectors as needed.)

Answers

A basis for the set of vectors in R2 on the line y = 19x is {(1, 19)}.

How to find a basis for the set of vectors?

To find a basis for the set of vectors in R2 on the line y = 19x, we need to find a vector that lies on the line and can represent any other vector on the line through scalar multiplication.

1. Choose a point on the line y = 19x. Let's choose the point (1, 19) since when x = 1, y = 19(1) = 19.
2. Create a vector from the origin to the chosen point. The vector would be v = (1, 19).
3. Verify that this vector lies on the line. The equation of the line is y = 19x, and our vector v = (1, 19) satisfies this equation since 19 = 19(1).

So, a basis for the set of vectors in R2 on the line y = 19x is {(1, 19)}. Any other vector on the line can be represented as a scalar multiple of this basis vector.

Learn more about vector

brainly.com/question/29740341

#SPJ11

Jamal measures the round temperature dial on a thermostat and calculates that it has a circumference of 87.92 millimeters. What is the dial's radius?

Answers




To find the radius of the round temperature dial on a thermostat, we need to use the formula for the circumference of a circle:

C = 2πr

where C is the circumference and r is the radius.

Given that the circumference of the dial is 87.92 millimeters, we can plug in this value for C and solve for r:

87.92 = 2πr

Divide both sides by 2π:

r = 87.92 / 2π

Using a calculator, we can evaluate this expression to find that:

r ≈ 13.997 millimeters

Therefore, the radius of the dial is approximately 13.997 millimeters.

To explain the reasoning behind this calculation, we can think about what the circumference of a circle represents. The circumference is the distance around the outside of the circle, or the total length of the circle's boundary. In this case, the temperature dial has a circular shape, so we can use the formula for the circumference of a circle to find its radius. By solving for the radius, wecircumferencewecircumferencewewecircumferencewwe can determine how far away from the center of the circle the outer edge of the dial is located. This information might be useful for understanding the physical design of the thermostat or for making measurements or calculations involving the dial's size or position.

To learn more about circumference click:
https://brainly.com/question/20489969

#SPJ1

The dial's radius is approximately 13.99 millimeters.

What is formula of  circumference?

The circumference of a circle is given by the formula:

C = 2πr

where C is the circumference, π is the constant pi (approximately equal to 3.14159), and r is the radius of the circle.

The circumference C in this instance is 87.92 millimeters. We can adjust the equation to address for the sweep:

r = C / 2π

Substituting the given value for C, we get:

r = 87.92 mm / (2π)

r ≈ 13.99 mm

As a result, the dial has a radius of about 13.99 millimeters.

know more about circle visit :

https://brainly.com/question/29142813

#SPJ1

what is the length of the third side of an isoceles triangle if2 sides are 2 and 2?

Answers

The length of the third side of this isosceles triangle is 2 units.

We have,

If two sides of an isosceles triangle are equal, then the third side must also be equal in length.

So,

If two sides of the triangle are 2 and 2, the length of the third side must also be 2.

Thus,

The length of the third side of this isosceles triangle is 2 units.

Learn more about triangles here:

https://brainly.com/question/25950519

#SPJ1

it's a herd math and very herd if you slov this you are supper go

Answers

The value x may be expressed as (a - b)(ab + b) / (ab - 1)(ab + 1).

How to simplify an expression?

To simplify the given expression x = (a² + b²) / (a b + 1), start by multiplying both the numerator and the denominator by (a b - 1) as follows:

x = (a² + b²)(a b - 1) / (a b + 1)(a b - 1)

Expanding the numerator using the distributive property:

x = (a² b - a² + a b² - b²) / (a² b - a b + a b² - 1)

Rearranging the terms in the numerator:

x = (a² b + a b² - a² - b²) / (a² b - a b + a b² - 1)

Factoring the numerator:

x = [(a² b - a b) + (a b² - b²)] / (a²b - a b + a b² - 1)

x = [a b (a - b) + b²(a - b)] / (a b - 1)(a b + 1)

x = (a - b)(a b + b) / (a b - 1)(a b + 1)

Therefore, the simplified expression for x is (a - b)(ab + b) / (ab - 1)(ab + 1).

Find out more on simplification here: https://brainly.com/question/28008382

#SPJ1

An element with mass 310 grams decays by 8.9% per minute. How much of the element is remaining after 19 minutes, to the nearest 10th of a gram?

please show ur work

Answers

Answer:

52.7 g

Step-by-step explanation:

We are given;

Initial mass of the element is 310 g

Rate of decay 8.9% per minute

Time for the decay 19 minutes

We are required to determine the amount of the element that will remain after 19 minutes.

We can use the formula;

New mass = Original mass × (1-r)^n

Where n is the time taken and r is the rate of decay.

Therefore;

Remaining mass = 310 g × (1-0.089)^19

                           = 52.748 g

                           = 52.7 g (to the nearest 10th)

Thus, the mass that will remain after 9 minutes will be 52.7 g

Other Questions
The Battery Park Stable feeds and houses horses used to pull tourist-filled carriages through the streets of Charlestons historic waterfront area. The stable owner, an ex-racehorse trainer, recognizes the need to set a nutritional diet for the horses in his care. At the same time, he would like to keep the overall daily cost of feed to a minimum. The feed mixes available for the horses diet are an oat product, a highly enriched grain, and a mineral product. Each of these mixes contains a certain amount of five ingredients (labeled as A, B, C, D, and E) needed daily to keep the average horse healthy. The table below shows these minimum requirements, units of each ingredient per pound of feed mix, and costs for the three mixes. In addition, the stable owner is aware that an overfed horse is a sluggish worker. Consequently, he determines that 6 pounds of feed per day are the most that any horse needs to function properly. a) (4 pts) Is this a maximization or a minimization problem? What is the objective?b) (8 pts) Formulate this problem mathematically. Use X1, X2, and X3 to represent the amount ofoat product, enriched grain, and mineral product, respectively. Write down or type the objectivefunction and all constraints clearly. (Dont forget the nonnegativity constraints when applicable.)c) (8 pts) Set up this problem in Excel and use Solver to find the optimal daily mix of the threefeeds, i.e., the optimal value for X1, X2, and X3. Select all of the complex sentence(s).I'm dreading my driving lessonas I'm always stalling.My favourite subject isn'tmaths.I'm not happy about it, but Ican't stop you from goingtravelling.get paid at the end of the week,but I won't have enough moneyto pay for a holiday.I like reading, and I try to read atleast a book a month. one of the effects of trade with byzantine empire was The specific heat of copper is 0.385 J/(gC). If 34.2 g of copper, initially at 25C, absorbs 7.880 kJ, what will be the final temperature of the copper? ? a. 623C 27.8C 25.4C 598C Given the following data,S(s) + O2(g) => SO2(g) Go = -293S(s) + 3/2 O2(g) => SO3(g) Go = -396Find Go for SO2(g) + O2(g) => SO3(g) What will be the entire outcome of the following sql statement issued in the doctors and specialties database? grant select, insert, alter, update on specialty to katie;a/ Katie can read data from SPECIALTY, change data in SPECIALTY, change the metadata of SPECIALTY, insert data in SPECIALTYb/ Katie can read data from SPECIALTY, change data in SPECIALTY, insert data in SPECIALTYc/ Katie can read data from SPECIALTY, change data in SPECIALTY, change the metadata of SPECIALTYd/ Katie can change the metadata of SPECIALTYe/ Grant can select, alter and update specialties for Katie how did the mayans solve the challenge of their expanding civilization? A binomial probability experiment is conducted with the given parameters. Compute the probability of x successes in the n independent trials of the experiment. n=9, p = 0.4 x 29. the product of the reaction between an alkene with hbr is.whereas the product between the reaction of an alkyne with hbr is Proration means what your paying monthly SHOW YOUR WORKPRACTICE : DETERMINE THE PROBABILITY OF EACH DEPENDENT EVENT OCCURRING.A bag has 5 red marbles ,1 green marbles ,8 yellow marbles ,and 2 blue marbles .What is the probability of drawing a yellow marble ,holding on to it ,and then drawing a red marble??? What do the matrices in SVD represent? a dependent variable is also known as a(n) _____. a. control variable b. predictor variable c. response variable d. explanatory variable Identify the horizontal shift (h) and the vertical shift (k). Then find the amplitude (|a|), if applicable, the frequency (b), and the period (P). y=tan x, y=cot x Suppose you are trying to estimate the average amount you can drive your car on one tank of gas. Every time you fill up your gas tank you reset your odometer and when the empty light comes on your record how many miles you had driven since you filled up the tank. You do this n=25 times, and from your data you calculate a sample mean of 303 and a sample standard deviation of 46. (round your answers to 3 decimal places) 1. The parameter we are interested in estimating i ---Select--- 2. The standard error of the mean for this data se 3. The approximate 95% margin of error is 3. The approximate 95% CI for u is What would happen in the long run if DiGiorno stopped advertising? Use the straight-line tool on the graph below to illustrate the demand curve that DiGiorno would face if it ceased marketing its product as a higher-than-average quality frozen pizza. Start this new demand curve at Q = 1 and continue to Q = 12. To refer to the graphing tutorial for this question type, please click here. DiGiorno Pizza Price 16 MC 15 14 13 12 ATC , 11 10 8 7 6 5 3 2 1 D MR 0 Quantity write a story on which the moral should be " education is more important than wealth". Consider the series[n=1 to [infinity]] ln(n/(n+3))Determine whether the series converges, and if it converges, determine its value.Converges (y/n):Value if convergent (blank otherwise): In the context of antibiotic usage, when should a person stop taking antibiotics after their symptoms disappear? What is the Action type selected for a Transfer PAR?