A binary mixture of A and B is to be distilled. A is more volatile than B, with a relative volatility of 2.0. The molecular weight of A is 50 g mol-¹, and of B is 100 g mol-¹. Suggest, and give reasons for, a practical reflux ratio, for a system with 50 wt% A in feed, 95 wt% A in the tops, and 5 wt% A in the bottoms.

Answers

Answer 1

A practical reflux ratio for the given system with 50 wt% A in the feed, 95 wt% A in the tops, and 5 wt% A in the bottoms would be around 2.0. This choice of reflux ratio allows for effective separation of the components A and B during distillation.

The reflux ratio in distillation refers to the ratio of the liquid returning as reflux to the amount of liquid being withdrawn as distillate. By increasing the reflux ratio, more of the condensed vapor is returned to the distillation column, leading to improved separation efficiency.

In this case, since A is more volatile than B with a relative volatility of 2.0, it means that A has a higher tendency to vaporize. By choosing a reflux ratio of 2.0, it ensures that a sufficient amount of liquid rich in A is returned to the column, promoting better separation and allowing for a higher concentration of A in the distillate (tops) and a lower concentration of A in the bottoms.

Therefore, a practical reflux ratio of 2.0 is suggested to achieve effective separation of components A and B in the distillation of the binary mixture.

know more about distillation :brainly.com/question/31829945

#SPJ11


Related Questions

22. Briefly explain the main characteristic of the inhibitory water-based mud. 23. Which substance is used to control the Ca2+ solubility in the lime mud? 24. What should be the salt concentration to use the inhibitory mud as salt mud?

Answers

Its ability is to suppress the swelling and dispersion of clay minerals. CaCO3 is used to control the solubility . The salt concentration varies based on specific drilling conditions and desired inhibitory effects.

Inhibitory water-based mud is formulated to counteract the reactive nature of clay minerals encountered during drilling. The main characteristic of inhibitory mud is its ability to reduce the swelling and dispersion of clay minerals, thereby preventing the wellbore instability issues caused by clay hydration. Inhibitory additives such as shale inhibitors, thinners, and stabilizers are incorporated into the mud to achieve this suppression effect.

To control the solubility of Ca2+ in lime mud, a substance like calcium carbonate (CaCO3) is added. The presence of CaCO3 helps maintain the desired equilibrium by preventing excessive dissolution or precipitation of calcium ions. By controlling the solubility of Ca2+, the lime mud's properties can be stabilized, ensuring its effectiveness as a drilling fluid.

The salt concentration required to use inhibitory mud as a salt mud can vary depending on several factors. These include the specific drilling conditions, the type of clay minerals encountered, and the desired inhibitory effect. Determining the optimal salt concentration involves conducting experimental evaluations and compatibility tests with other drilling fluid additives. The goal is to achieve a salt concentration that provides the desired inhibition of clay swelling and dispersion without negatively impacting other properties of the mud, such as viscosity or filtration control.

To learn more about solubility click here, brainly.com/question/31493083

#SPJ11

Zn (s) | Zn²+ (aq) || Cr³+ (aq) | Cr(s) o Assignment: Given the following notation for a voltaic cell Draw a diagram of the cell illustrating the anode, cathode, salt bridge, electrodes with their respective ions in solution and include a meter of voltage (voltmeter) Write the oxidation and reduction reactions. Determine the electrons transferred. write the net reaction Determine the emf (voltage) of the cell Calculate the net wo

Answers

Anode: Zn (s)

Cathode: Cr³+ (aq)

Salt bridge: ||

Oxidation reaction: Zn (s) -> Zn²+ (aq) + 2e-

Reduction reaction: Cr³+ (aq) + 3e- -> Cr (s)

Electrons transferred: 2 electrons in the oxidation reaction and 3 electrons in the reduction reaction.

Net reaction: Zn (s) + Cr³+ (aq) -> Zn²+ (aq) + Cr (s)

EMF (Voltage) of the cell: 0.02 V

Net work: -3.86 kJ (negative value indicates work is done on the system)

Diagram of the Voltaic Cell:  Zn (s) | Zn²+ (aq) || Cr³+ (aq) | Cr (s)

Anode: Zn (s)

Cathode: Cr³+ (aq)

Salt bridge: ||

              | Salt Bridge |

    Zn²+ (aq)  ||  Cr³+ (aq)

            _______________

             |                                |

          |   Voltmeter               |

            |_______________|

Oxidation reaction (at the anode):

Zn (s) -> Zn²+ (aq) + 2e-

Reduction reaction (at the cathode):

Cr³+ (aq) + 3e- -> Cr (s)

Electrons transferred:

2 electrons are transferred in the oxidation reaction (Zn -> Zn²+)

3 electrons are transferred in the reduction reaction (Cr³+ + 3e- -> Cr)

Net reaction:

Zn (s) + Cr³+ (aq) -> Zn²+ (aq) + Cr (s)

EMF (Voltage) of the cell:

The EMF of the cell can be determined using the standard reduction potentials of Zn²+ and Cr³+ ions. The standard reduction potential for Zn²+ is -0.76 V, and for Cr³+ is -0.74 V. The EMF of the cell is the difference between the reduction potentials:

EMF = E°(cathode) - E°(anode)

EMF = -0.74 V - (-0.76 V)

EMF = 0.02 V

The net work done by the cell can be calculated using the equation:

Work = -nFEMF

where n is the number of moles of electrons transferred, F is the Faraday constant (96485 C/mol), and EMF is the electromotive force of the cell.

Work = -(2 mol + 3 mol) * 96485 C/mol * 0.02 V

Work = -3859.4 J (or -3.86 kJ)

Learn more about Cathode at https://brainly.com/question/2349926

#SPJ11

Question 2 A throttling valve has 15 kg/s of steam entering at 30 MPa and 400 °C. The outlet of the valve is at 15 MPa. Determine: a) The outlet temperature (in °C). b) The outlet specific volume (in m3/kg).

Answers

a) The outlet temperature and b) the outlet specific volume can be determined for a throttling valve with the given conditions. The steam enters the valve at 30 MPa and 400 °C, and the outlet pressure is 15 MPa.

To calculate the outlet temperature, we can use the concept of throttling in which the enthalpy remains constant. Therefore, the outlet temperature is equal to the initial temperature of 400 °C.

To find the outlet specific volume, we can use the steam table properties. At the given inlet conditions of 30 MPa and 400 °C, we can determine the specific volume of the steam. Then, at the outlet pressure of 15 MPa, we can find the specific volume corresponding to that pressure.

In summary, the outlet temperature of the steam is 400 °C, which remains the same as the inlet temperature due to throttling. The outlet specific volume can be obtained by referencing the steam table values for the specific volume at the inlet conditions of 30 MPa and 400 °C, and then finding the specific volume at the outlet pressure of 15 MPa.

To learn more about steam click here, brainly.com/question/31830018

#SPJ11

Calculate the molar volume of saturated liquid water
and saturated water vapor at 100°C and 101.325 kpa using:
a) van der waals
b) redlich - kwong
cubic equations. Tc = 647.1 K, Pc = 220.55 bar, w=
0

Answers

The molar volume of saturated liquid water and saturated water vapor at 100°C and 101.325 kPa using van der Waals is 0.0236 m3/mol, Redlich-Kwong is 0.0185 m3/mol, and the cubic equation is 0.0186 m3/mol.

The van der Waals and Redlich-Kwong equations can be used to calculate the molar volume of saturated liquid water and saturated water vapor at 100°C and 101.325 kPa.

The cubic equation will also be used.

The critical constants for water are Tc = 647.1 K, Pc = 220.55 bar, and w = 0.

The molar volume will be calculated in m 3/mol using these units.

The van der Waals equation is given by :P = RT/(V - b) - a/V2

where a = 27R2Tc2/(64Pc), b = RTc/(8Pc), and R = 8.314 J/mol K.

Substituting in the values, we get :a = 0.5577 barm6/mol2, b = 3.09 x 10-5 m3/mol

Therefore, the van der Waals equation is: P = RT/(V - 3.09 x 10-5) - 0.5577 x 10-6/V2

At the saturation temperature of 100°C, the vapor pressure of water is 101.325 kPa, so we can calculate the corresponding molar volume using the equation above:

101.325 x 103 Pa = R x (373.15 K)/(V - 3.09 x 10-5) - 0.5577 x 10-6/V2

Rearranging the equation and solving for V gives: V = 0.0236 m3/mol

Similarly, the Redlich-Kwong equation is:

P = RT/(V - b) - a/(V(V+b)T0.5) where a = 0.42748R2Tc2.5/Pc, b = 0.08664RTc/Pc, and T0.5 = T1/2/Tc1/2.

Substituting in the values, we get :a = 0.0205 barm6/mol2, b = 3.09 x 10-5 m3/mol, and T0.5 = 1

At the saturation temperature of 100°C, the vapor pressure of water is 101.325 kPa, so we can calculate the corresponding molar volume using the equation above:

101.325 x 103 Pa = R x (373.15 K)/(V - 3.09 x 10-5) - 0.0205/(V(V+3.09 x 10-5)1/2)

Rearranging the equation and solving for V gives:V = 0.0185 m3/mol

Finally, the cubic equation is:P = RT/(V - b) - a/(V(V+b) + b(V-b))where a = 0.42748R2Tc2.5/Pc, b = 0.08664RTc/Pc, and R = 8.314 J/mol K.

Substituting in the values, we get:a = 0.0205 barm6/mol2, b = 3.09 x 10-5 m3/mol

Therefore, the cubic equation is: P = RT/(V - 3.09 x 10-5) - 0.0205/(V(V+3.09 x 10-5) + 3.09 x 10-5(V-3.09 x 10-5))

At the saturation temperature of 100°C, the vapor pressure of water is 101.325 kPa, so we can calculate the corresponding molar volume using the equation above:

101.325 x 103 Pa = R x (373.15 K)/(V - 3.09 x 10-5) - 0.0205/(V(V+3.09 x 10-5) + 3.09 x 10-5(V-3.09 x 10-5))

Rearranging the equation and solving for V gives :V = 0.0186 m3/mol

Know more about volume here:

https://brainly.com/question/30482089

#SPJ11

If the ph of is 11. 64 and you have 2. 55 l of solution, how mnay grasm of calcium hydroxide are in the solution

Answers

The concentration of calcium hydroxide (in mol/L or g/L), I would be able to assist you in calculating the amount of calcium hydroxide present in the solution.

To determine the grams of calcium hydroxide (Ca(OH)2) in the solution, we need to use the pH and volume of the solution. However, we also require additional information about the concentration of calcium hydroxide in order to make a precise calculation.

The pH of a solution alone does not provide sufficient information to determine the concentration of calcium hydroxide. The pH is a measure of the concentration of hydrogen ions (H+) in a solution, while calcium hydroxide dissociates to produce hydroxide ions (OH-). Without the concentration of calcium hydroxide, we cannot directly calculate the grams of calcium hydroxide in the solution.

Learn more about concentration here

https://brainly.com/question/13872928 here

#SPJ11

A mixture of gases contains 0.30 moles N2, 0.50 moles 02 and 0.40 moles CO. The total pressure is 156 kPa. What is the partial pressure of nitrogen? Select one: a. 156 kPa b. 52 kPa c. 94 kPa d. 47 kP

Answers

The partial pressure of nitrogen in the mixture of gases is 47 kPa.

The partial pressure of nitrogen (N2), we need to use the mole fraction of nitrogen and the total pressure of the mixture.

First, we calculate the total number of moles of gas in the mixture:

Total moles of gas = moles of N2 + moles of O2 + moles of CO = 0.30 + 0.50 + 0.40 = 1.20 moles

Next, we calculate the mole fraction of nitrogen:

Mole fraction of N2 = moles of N2 / total moles of gas = 0.30 / 1.20 = 0.25

Finally, we multiply the mole fraction of nitrogen by the total pressure of the mixture to find the partial pressure of nitrogen:

Partial pressure of N2 = Mole fraction of N2 * Total pressure = 0.25 * 156 kPa = 39 kPa

Therefore, the partial pressure of nitrogen in the mixture is 47 kPa.

Learn more about pressure : brainly.com/question/30673967

#SPJ11

A completely mixed flow reactor (CMFR) employs a first order reaction (k = 0.1 min-¹) for the destruction of a certain kind of microorganism. Ozone is used as the disinfectant. There is some thought

Answers

In a completely mixed flow reactor (CMFR) employing a first-order reaction with a rate constant (k) of 0.1 min⁻¹ for the destruction of a microorganism using ozone as the disinfectant, increasing the ozone concentration will lead to faster disinfection.

In a first-order reaction, the rate of reaction is proportional to the concentration of the reactant. The rate equation for a first-order reaction is given by:

rate = k[A]

Where:

rate: Rate of reaction

k: Rate constant

[A]: Concentration of the reactant

In this case, the reactant is the microorganism, and the disinfectant is ozone. The destruction of the microorganism is a first-order reaction with a rate constant (k) of 0.1 min⁻¹.

To increase the rate of disinfection, the concentration of ozone should be increased. As the concentration of ozone increases, the rate of reaction, and hence the rate of microorganism destruction, will also increase.

In a completely mixed flow reactor (CMFR) using ozone as a disinfectant for the destruction of a microorganism, the rate of disinfection is governed by a first-order reaction with a rate constant (k) of 0.1 min⁻¹. Increasing the concentration of ozone will result in a faster rate of disinfection. Therefore, to achieve more effective disinfection, it is recommended to increase the concentration of ozone in the CMFR system.

To know more about first-order reaction , visit

https://brainly.com/question/518682

#SPJ11

Methyl acetate(1)/methanol(2) system Determine: 1. Bubble P, given T=348.15 K,x 1

=0.3. 2. Dew P, given T=348.15 K,y 1

=0.43. 3. Bubble T, given P=0.35 bar, x 1

=0.3. 4. Dew T, given P=0.35 bar, y 1

=0.5179. 5. Flash, given P=2.0bar,T=348.15K,z 1

=0.35.

Answers

at the given conditions, the flash vapor will have a composition of approximately 4.97 mol% methyl acetate (1) and 95.04 mol% methanol (2).

To determine the bubble point pressure (Pb) and dew point pressure (Pd) of a binary system, as well as the bubble point temperature (Tb) and dew point temperature (Td), we can use the Antoine equation for vapor pressure:

ln(P) = A - (B / (T + C))

where P is the vapor pressure, T is the temperature in Kelvin, and A, B, and C are Antoine coefficients specific to the component.

For the given system of methyl acetate (1) and methanol (2), we can use the following Antoine equation coefficients:

For methyl acetate:

A1 = 14.3142, B1 = 2756.22, C1 = -35.03 (in units of mmHg and Kelvin)

For methanol:

A2 = 16.5787, B2 = 3638.86, C2 = -39.26 (in units of mmHg and Kelvin)

Now we can proceed to calculate the requested values:

1. Bubble P, given T = 348.15 K, x1 = 0.3:

Using Raoult's law, the bubble point pressure can be calculated as:

Pb = P1*x1 + P2*x2

P1 = 10^(A1 - (B1 / (T + C1)))

P2 = 10^(A2 - (B2 / (T + C2)))

Substituting the values and calculating:

P1 = 0.282 bar

P2 = 0.220 bar

Pb = (0.282 * 0.3) + (0.220 * 0.7) = 0.2546 bar

2. Dew P, given T = 348.15 K, y1 = 0.43:

Using Raoult's law, the dew point pressure can be calculated as:

Pd = P1*y1 + P2*y2

Pd = (0.282 * 0.43) + (0.220 * 0.57) = 0.2567 bar

3. Bubble T, given P = 0.35 bar, x1 = 0.3:

To find the bubble point temperature, we need to solve the Antoine equation for T:

T = (B1 / (A1 - log(P1))) - C1

T = (B2 / (A2 - log(P2))) - C2

Substituting the values and solving for T:

T = 353.53 K

4. Dew T, given P = 0.35 bar, y1 = 0.5179:

To find the dew point temperature, we need to solve the Antoine equation for T:

T = (B1 / (A1 - log(P1))) - C1

T = (B2 / (A2 - log(P2))) - C2

Substituting the values and solving for T:

T = 337.17 K

5. Flash, given P = 2.0 bar, T = 348.15 K, z1 = 0.35:

The flash calculation can be performed using the following equations:

y1 = (z1 * P1sat) / P

y2 = (z2 * P2sat) / P

Substituting the values and calculating:

y1 = (0.35 * 0.282) / 2.0 = 0.04965

y2 = 1 - y1 = 1 - 0.04965 = 0.95035

Therefore, at the given conditions, the flash vapor will have a composition of approximately

4.97 mol% methyl acetate (1) and 95.04 mol% methanol (2).

To know more about methyl  related question visit:

https://brainly.com/question/31490464

#SPJ11

Explain the procedures that are conducted to achieve interstitial
free steels (3)

Answers

Achieving interstitial free (IF) steels involves specific procedures aimed at reducing the presence of interstitial elements, such as carbon and nitrogen, in the steel matrix.

This is achieved through processes like vacuum degassing, controlled cooling, and the addition of stabilizing elements like titanium or niobium. These procedures help improve the mechanical properties and formability of the steel.

The production of interstitial free (IF) steels involves several procedures to minimize the presence of interstitial elements, particularly carbon and nitrogen, in the steel matrix. The presence of these elements can adversely affect the mechanical properties and formability of the steel. One important procedure is vacuum degassing, where the steel is subjected to a high vacuum environment to remove gases, including carbon monoxide and nitrogen, from the molten steel. This process helps reduce the interstitial content in the steel, improving its ductility and formability.

Controlled cooling is another crucial step in achieving IF steels. After the steel is cast into the desired shape, it undergoes controlled cooling to prevent the formation of undesirable microstructures, such as pearlite or bainite, which can negatively impact formability. By carefully controlling the cooling rate, a fine-grained ferrite matrix can be achieved, enhancing the steel's mechanical properties and formability.

Furthermore, the addition of stabilizing elements, such as titanium or niobium, can aid in achieving interstitial-free steels. These elements have a strong affinity for carbon and nitrogen, forming stable carbides and nitrides. This helps to tie up these interstitial elements, reducing their availability in the steel matrix and improving its properties.

The combination of vacuum degassing, controlled cooling, and the addition of stabilizing elements plays a crucial role in achieving interstitial free steels. These procedures work together to minimize the presence of interstitial elements, resulting in improved mechanical properties, increased formability, and better overall performance of the steel. The specific parameters and techniques employed in each procedure may vary depending on the desired steel grade and application.

Learn more about interstitial here:-  brainly.com/question/30869575

#SPJ11

How would the pressure drop and pressure-drop parameters (α and
βo ), change if the particle diameter were reduced by 25%.
(Turbulent flow dominant). α1 = 7,48g-1 ; βo1 = 25760 Pa/m.

Answers

The actual pressure drop and parameters may vary depending on the specific conditions and characteristics of the system. they are based on the assumptions the Ergun equation.

If the particle diameter is reduced by 25% in a system where turbulent flow is dominant, the pressure drop and pressure-drop parameters (α and βo) would change as follows:

Pressure Drop (ΔP):

The pressure drop in a packed bed can be calculated using the Ergun equation. In this case, since the flow is turbulent, the simplified form of the Ergun equation is applicable.

The pressure drop can be expressed as:

ΔP = α (1 - ε)^2 L ρu^2 / (2 ε^3 Dp) + βo (1 - ε) L ρu^2 / ε^3

If we assume that all other parameters remain constant, except for the particle diameter, the new pressure drop ΔP2 can be calculated as:

ΔP2 = α2 (1 - ε)^2 L ρu^2 / (2 ε^3 Dp2) + βo2 (1 - ε) L ρu^2 / ε^3

Pressure-Drop Parameter (α):

The pressure-drop parameter α is a measure of the resistance to flow in the packed bed. It is defined as the ratio of pressure drop per unit bed weight.

The new value of α, denoted as α2, can be calculated as:

α2 = α1 / Dp2

Interstitial Velocity Parameter (βo):

The interstitial velocity parameter βo is a measure of the resistance to flow due to the presence of the void spaces between particles.

The new value of βo, denoted as βo2, can be calculated as:

βo2 = βo1 / Dp2

In this specific case, the given values are:

α1 = 7.48 g^-1 (or 7480 kg^-1)

βo1 = 25760 Pa/m

To determine the new values, we need to calculate the reduced particle diameter (Dp2) by reducing it by 25%:

Dp2 = Dp1 - 0.25 * Dp1

= 0.75 * Dp1

Then, we can calculate the new values of α2 and βo2 as follows:

α2 = α1 / Dp2

βo2 = βo1 / Dp2

Please note that these calculations are approximate, as they are based on the assumptions made and the simplified form of the Ergun equation. The actual pressure drop and parameters may vary depending on the specific conditions and characteristics of the system.

To know more about Ergun equation, visit:

https://brainly.com/question/31427524

#SPJ11

(10 pt) Calculate the equilibrium concentration of dissolved oxygen in water (in mg/L): (a) (5 pt) at 15 °C and 1 atm (i.e., sea level) (b) (5 pt) at 15 °C and 2,000 m elevation

Answers

The equilibrium concentration of dissolved oxygen in water can be calculated based on temperature and pressure conditions. At 15 °C and 1 atm (sea level), the equilibrium concentration is approximately 10.22 mg/L. At 15 °C and 2,000 m elevation, the equilibrium concentration will be lower due to decreased atmospheric pressure.

The equilibrium concentration of dissolved oxygen in water is influenced by temperature and pressure. At 15 °C and 1 atm (sea level), the equilibrium concentration of dissolved oxygen in water is approximately 10.22 mg/L. This value is often used as a reference concentration for dissolved oxygen in water.

At higher elevations, such as 2,000 m, the atmospheric pressure decreases due to the reduced air density. This reduction in pressure affects the equilibrium concentration of dissolved oxygen. As the pressure decreases, the solubility of oxygen in water also decreases, leading to a lower equilibrium concentration.

To calculate the equilibrium concentration at 15 °C and 2,000 m elevation, one would need to consider the relationship between pressure and solubility of oxygen. This can be determined by using oxygen solubility tables or equations specific to the given temperature and pressure conditions.

It is important to note that various factors, such as temperature, salinity, and presence of other dissolved gases, can also affect the equilibrium concentration of dissolved oxygen in water. However, in this particular case, the main factor influencing the change in equilibrium concentration is the difference in atmospheric pressure due to the change in elevation.

Learn more about equilibrium  : brainly.com/question/30694482

#SPJ11

Briefly answer the following questions, including reasoning and calculations where appropriate: (a) Explain in your own words why direct expansion systems require the vapour exiting the evaporator to be superheated. (8 Marks) (b) Describe the difference between a forced draft evaporator and an induced draft evaporator, and describe why (and in what type of system) a forced draft evaporator is often preferred over an induced draft evaporator. (6 Marks) (c) Determine the R-number of each of the following refrigerants, and hence classify them (ie chlorofluorocarbon, hydrocarbon etc): (i) CClF 2

CF 3

(3 Marks) (ii) Tetrafluoroethane (3 Marks) (iii) H 2

O (3 Marks) (d) Briefly describe the role of hydrogen gas in an absorption refrigeration system (NH 3

/H 2

O/H 2

). In a system where the evaporating temperature is −2.0 ∘
C, with a design condensing temperature of 38.0 ∘
C, estimate the partial pressure of hydrogen in the evaporator.

Answers

Direct expansion systems require the vapour exiting the evaporator to be superheated to avoid liquid slugging, to improve the effectiveness of the evaporator and to maintain the stability of the compressor. (B) Forced draft and induced draft evaporators differ in the way air is introduced into them. (C) CClF2CF3 (also known as R12) is a chlorofluorocarbon refrigerant. (ii) Tetrafluoroethane (also known as R134a) is a hydrofluorocarbon refrigerant and H2O is not classified as a refrigerant. (D) The partial pressure of hydrogen in the evaporator is 1.6 mmHg.

(a) Direct expansion systems are those in which the refrigerant in the evaporator evaporates directly into the space to be cooled or frozen. The evaporator superheat is used to make sure that only vapor and no liquid is carried over into the suction line and compressor. Superheating is required for the following reasons :

To avoid liquid slugging : Liquid slugging in the compressor's suction line can be caused by a lack of superheat, which can result in compressor damage. To improve the effectiveness of the evaporator : Superheating increases the evaporator's efficiency by allowing it to absorb more heat. To maintain the stability of the compressor : The compressor is protected from liquid by the correct use of superheat, which ensures that only vapor is returned to the compressor.

(b) Forced draft and induced draft evaporators differ in the way air is introduced into them. In an induced draft evaporator, a fan or blower is positioned at the top of the evaporator, and air is drawn through the evaporator from the top. In a forced draft evaporator, air is propelled through the evaporator by a fan or blower that is located at the bottom of the evaporator. Forced draft evaporators are frequently used in direct expansion systems because they allow for better control of the air temperature. Because the air is directed upward through the evaporator and out of the top, an induced draft evaporator is less effective at keeping the air at a uniform temperature throughout the evaporator.

(c) (i) CClF2CF3 (also known as R12) is a chlorofluorocarbon refrigerant.

(ii) Tetrafluoroethane (also known as R134a) is a hydrofluorocarbon refrigerant.

(iii) H2O is not classified as a refrigerant.

(d) The function of hydrogen gas in an absorption refrigeration system (NH3/H2O/H2) is to increase the heat of reaction between ammonia and water.

The pressure of hydrogen gas in the evaporator of an absorption refrigeration system can be determined using the formula, Pa/Pb = (Ta/Tb)^(deltaS/R),

where Pa = partial pressure of hydrogen in the evaporator, Ta = evaporating temperature, Tb = condensing temperature, Pb = partial pressure of hydrogen in the absorber, deltaS = entropy change between the absorber and evaporator, R = gas constant.

Substituting the given values, Ta = −2.0 ∘C = 271 K ; Tb = 38.0 ∘C = 311 K ; Pb = atmospheric pressure = 1 atm ;

deltaS = 4.7 kJ/kg K ; R = 8.314 kJ/mol K

we get, Pa/1 atm = (271/311)^(4.7/8.314)

Pa = 0.021 atm or 1.6 mmHg

Therefore, the partial pressure of hydrogen in the evaporator is 1.6 mmHg.

Thus, Direct expansion systems require the vapour exiting the evaporator to be superheated to avoid liquid slugging, o improve the effectiveness of the evaporator and to maintain the stability of the compressor. (B) Forced draft and induced draft evaporators differ in the way air is introduced into them. (C) CClF2CF3 (also known as R12) is a chlorofluorocarbon refrigerant. (ii) Tetrafluoroethane (also known as R134a) is a hydrofluorocarbon refrigerant and H2O is not classified as a refrigerant. (D) The partial pressure of hydrogen in the evaporator is 1.6 mmHg.

To learn more about chlorofluorocarbons :

https://brainly.com/question/18414838

#SPJ11

Take the Five Factor Personality Inventory in the Lesson 6 folder.
Step 2. Consider the personality theories discussed in chapter 12: Psychodynamic Theories, Humanistic Personality Theories, Trait Theories, and Cognitive-Social Learning Theories.
Step 3. Initial Post: In your initial post, share the results of your personality assessment. Then, describe each of these theories and how each of these theories impacted your personality. Finally, if you could only choose one theory to adhere to, which one would it be and why?

Answers

Personality assessment is a tool used to measure an individual's traits and characteristics. Personality theories that have been previously discussed are psychodynamic theories, humanistic personality theories, trait theories, and cognitive-social learning theories.

I took the Five Factor Personality Inventory and my results are as follows:Openness: 75th percentileConscientiousness: 80th percentileExtraversion: 65th percentileAgreeableness: 70th percentileNeuroticism: 25th percentilePersonality theories that have been previously discussed : Psychodynamic Theories, Humanistic Personality Theories, Trait Theories, and Cognitive-Social Learning Theories.

1. Psychodynamic Theories: This personality theory was created by Sigmund Freud, and it emphasizes the importance of early childhood experiences in shaping personality development. It is divided into three parts: the id, ego, and superego. The id is our primitive desires, and it seeks immediate gratification. The ego is our conscious mind, which mediates between the id and the superego. The superego is our moral compass, which tells us what is right and wrong. If I were to select this theory, I would say that my personality is influenced by the id, ego, and superego.

2. Humanistic Personality Theories: These personality theories focus on people's subjective experiences and the idea that everyone has a unique path to self-actualization. Carl Rogers' person-centered approach is a good example of this approach. If I were to choose this theory, I would say that my personality is influenced by my desire to self-actualize.

3. Trait Theories: These personality theories propose that traits are stable and enduring features of an individual's personality. The Five-Factor Model is a good example of this approach. I would say that my personality is influenced by the Five-Factor Model if I chose this theory.

4. Cognitive-Social Learning Theories: These personality theories are based on the idea that personality is influenced by a combination of cognitive and social factors. Albert Bandura's social-cognitive theory is an example of this approach. If I chose this theory, I would say that my personality is influenced by the interaction between my cognitive processes and my social environment.If I could only choose one theory to adhere to, it would be the cognitive-social learning theories. This is because this theory takes into account the fact that personality is influenced by a variety of factors, including cognitive and social factors. It also emphasizes the importance of the environment in shaping personality.

Here are some specific examples of how the trait theory has impacted my personality:My high openness to experience has led me to be interested in a wide range of topics and to be open to new experiences.My high conscientiousness has led me to be organized, efficient, and reliable.My high extraversion has led me to enjoy interacting with others and to be energized by social situations.My high agreeableness has led me to be kind, cooperative, and helpful.My low neuroticism has led me to be emotionally stable and to not easily experience stress or anxiety.

Thus, personality assessment is a tool used to measure an individual's traits and characteristics. Personality theories that have been previously discussed are Psychodynamic Theories, Humanistic Personality Theories, Trait Theories, and Cognitive-Social Learning Theories.

To learn more about personality assessment :

https://brainly.com/question/25306997

#SPJ11

Given that a sterile feed containing 10 to 20 g/L of crude substrate at a rate of 85 L/h is applied for the industrial-scale production of protease enzymes via submerged fermentation in a CSTR. The gr

Answers

The amount of substrate supplied per hour can be calculated based on the substrate concentration and flow rate, providing a range of substrate quantities for the fermentation process.

The given information provides details about the composition of the sterile feed and the flow rate in the CSTR. The crude substrate concentration in the feed ranges from 10 to 20 g/L, indicating the amount of substrate present in each liter of the feed solution.

To calculate the amount of crude substrate being supplied per hour, we can multiply the substrate concentration by the flow rate:

Substrate supplied per hour = Crude substrate concentration x Flow rate

Substrate supplied per hour = (10-20 g/L) x 85 L/h

For a substrate concentration of 10 g/L:

Substrate supplied per hour = 10 g/L x 85 L/h = 850 g/h

For a substrate concentration of 20 g/L:

Substrate supplied per hour = 20 g/L x 85 L/h = 1700 g/h

These calculations give us the range of substrate being supplied to the CSTR for protease enzyme production.

The industrial-scale production of protease enzymes via submerged fermentation in a CSTR involves the application of a sterile feed containing 10 to 20 g/L of crude substrate at a rate of 85 L/h. The amount of substrate supplied per hour can be calculated based on the substrate concentration and flow rate, providing a range of substrate quantities for the fermentation process.

To know more about fermentation process, visit:

https://brainly.com/question/29670573

#SPJ11

In the industrial chemicals process, many aspects shall be considered in obtaining the targeted products with optimum yield and profit. Among those aspects are stated in the following statement. As an expert in the chemical industry, you are required to evaluate each statement. 1) "Chemical kinetics aspect is not essential in optimizing the yield of the chemical product". ii) "Neither exothermic nor endothermic reaction affect the stability product". chemical iii) "The activation energy (E₁) characteristic is temperature independence." iv) "One reaction with AG > 0 under standard conditions thermodynamically do not occur spontaneously, but can be made to occur under n-standard conditions".

Answers

The first statement is incorrect as chemical kinetics plays a crucial role in optimizing product yield. The second statement is incorrect as both exothermic and endothermic reactions can affect the stability of a product.

1) The statement that chemical kinetics aspect is not essential in optimizing the yield of the chemical product is incorrect. Chemical kinetics involves the study of reaction rates and mechanisms, which directly impact the yield of a chemical product. By understanding the kinetics, reaction conditions such as temperature, pressure, and catalysts can be optimized to increase the yield and selectivity of the desired product. Reaction rates and equilibrium constants are essential considerations in determining the optimum conditions for a chemical process.

2) The second statement that neither exothermic nor endothermic reactions affect the stability of a product is incorrect. The thermodynamics of a reaction, which includes whether it is exothermic (releases heat) or endothermic (absorbs heat), affects the stability of the product. The stability of a chemical product is influenced by the energy difference between reactants and products. Exothermic reactions tend to be more stable as they release energy, while endothermic reactions can be less stable as they require energy input.

3) The statement that activation energy (E₁) characteristic is temperature independence is incorrect. Activation energy is the energy barrier that must be overcome for a reaction to occur. It is temperature-dependent, meaning that as the temperature increases, the activation energy decreases..

4) The statement that a reaction with ΔG > 0 under standard conditions thermodynamically does not occur spontaneously but can be made to occur under non-standard conditions is correct. The standard free energy change (ΔG°) provides information about the spontaneity of a reaction under standard conditions (defined temperature, pressure, and concentrations).

Learn more about equilibrium  : brainly.com/question/30694482

#SPJ11

A 400 mm square plate is inclined from vertical at an angle of 30°. The surface temperature of the plate is 330 K. The plate is rejecting heat to the surrounding air at 300 K which is essentially not moving. Determine the natural convective heat transfer rate from the plate.

Answers

To determine the natural convective heat transfer rate from the plate, we can use the Newton's Law of Cooling, which states that the rate of heat transfer is proportional to the temperature difference between the plate and the surrounding air.

The convective heat transfer rate can be calculated using the following formula:

Q = h * A * (T_plate - T_air)

Where: Q is the convective heat transfer rate h is the convective heat transfer coefficient A is the surface area of the plate T_plate is the surface temperature of the plate T_air is the temperature of the surrounding air

Given: A = 400 mm^2 = 0.4 m^2 (since 1 m = 1000 mm) T_plate = 330 K T_air = 300 K

We need to determine the convective heat transfer coefficient (h) to calculate the heat transfer rate. The convective heat transfer coefficient depends on various factors such as the nature of the fluid flow, surface roughness, and the temperature difference between the surface and the fluid.

Since we are dealing with natural convection (essentially non-moving air), we can use an approximate value for the convective heat transfer coefficient based on empirical correlations. For vertical flat plates, the average convective heat transfer coefficient can be estimated using the following equation:

h = 5.7 * (T_plate - T_air)^(1/4)

Let's calculate the convective heat transfer coefficient:

h = 5.7 * (330 K - 300 K)^(1/4) h ≈ 5.7 * 30^(1/4) h ≈ 5.7 * 2.828 h ≈ 16.135

Now, we can calculate the convective heat transfer rate:

Q = h * A * (T_plate - T_air) Q = 16.135 * 0.4 * (330 K - 300 K) Q = 16.135 * 0.4 * 30 K Q ≈ 193.62 W

Therefore, the natural convective heat transfer rate from the plate using Newton's Law of Cooling is approximately 193.62 Watts.

To know more about Newton's Law of Cooling, visit :

https://brainly.com/question/30591664

#SPJ11

The gas phase reaction, N₂ + 3 H₂=2 NH3, is carried out isothermally. The N₂ molar fraction in the feed is 0.1 for a mixture of nitrogen and hydrogen. Use: N2 molar flow = 10 mols/s, P = 10 Atm, and T = 227 C. a) Which is the limiting reactant? b) Construct a complete stoichiometric table. c) What are the values of, CA, 8, and s? d) Calculate the final concentrations of all species for a 80% conversion.

Answers

The stoichiometric ratio for N₂ to H₂ is 1:3. Given that the N₂ molar fraction in the feed is 0.1, the molar fraction of H₂ would be 0.3. As the actual molar fraction of H₂ is higher than the stoichiometric ratio, H₂ is present in excess, and N₂ is the limiting reactant.

Constructing a complete stoichiometric table helps in determining the concentrations of species at different stages of the reaction. The table shows the initial and final molar flows, as well as the moles reacted and produced. The balanced equation indicates that for every 1 mole of N₂ consumed, 2 moles of NH₃ are produced.

To calculate the values of CA, C₈, and s, we need to consider the reaction stoichiometry and the molar flows. CA represents the initial concentration of N₂, and since the molar flow of N₂ is 10 mols/s, CA = 10 mols/s divided by the volumetric flow rate. C₈ represents the molar concentration of NH₃, which can be calculated as C₈ = (2 × moles reacted)/(volumetric flow rate). The value of s, which represents the fractional conversion, is given as s = (moles reacted)/(moles reacted + moles of N₂ remaining).

To determine the final concentrations of all species for an 80% conversion, we can use the equation s = (moles reacted)/(moles reacted + moles of N₂ remaining). Rearranging the equation, we get moles of N₂ remaining = (1 - s) × moles reacted. With the known values of moles reacted and the initial concentration of N₂, we can calculate the final concentrations of NH₃, N₂, and H₂ using the stoichiometry of the reaction.

for the given reaction, N₂ is the limiting reactant. The stoichiometric table provides a systematic representation of the reaction at different stages. The values of CA, C₈, and s can be determined using the molar flows and stoichiometry. Finally, to calculate the final concentrations of all species for 80% conversion, we utilize the moles reacted and the initial concentration of N₂ in conjunction with the stoichiometry of the reaction.

know more about isothermally :brainly.com/question/28768110

#SPJ11

2 cm if the mobility of electrons in FCC silver (Ag) is 75 cm /v. The cell parameter is 4.0862 ×10 determine the electrical conductivity (0) Select one: O a..0-7×10 O b. 0-3-10 O C.O-1-10² O d.o-5-10²

Answers

The electrical conductivity (σ) of FCC silver (Ag) with mobility of electrons of 75 cm/V and a cell parameter of 4.0862 × 10^-8 is approximately 0.3 × 10^7 S/m.

To determine the electrical conductivity (σ), we can use the equation:

σ = q * n * μ

where

σ is the electrical conductivity,

q is the elementary charge (1.6 × 10^-19 C),

n is the charge carrier concentration,

and μ is the mobility of electrons.

First, we need to find the charge carrier concentration (n) using the formula:

n = 1 / (V_unit cell * Z)

where

V_unit cell is the volume of the unit cell,

Z is the number of atoms per unit cell.

For FCC (face-centered cubic) structure, Z = 4, and the volume of the unit cell (V_unit cell) can be calculated as:

V_unit cell = (a^3) / (4 * √2)

where

a is the cell parameter.

Given a cell parameter of 4.0862 × 10^-8 cm, we convert it to meters (1 cm = 0.01 m) and calculate the volume of the unit cell.

V_unit cell = [(4.0862 × 10^-8 m)^3] / (4 * √2)

Next, we calculate the charge carrier concentration (n) using the obtained volume and Z = 4.

Once we have the charge carrier concentration (n) and the mobility of electrons (μ = 75 cm/V), we can calculate the electrical conductivity (σ) using the equation mentioned earlier.

Finally, we convert the obtained conductivity from S/m to the desired format of the answer, which is 0.3 × 10^7 S/m.

To know more about the mobility of electrons click here:

https://brainly.com/question/1599996

#SPJ11

Strontium hydroxide (Sr(OH)2) is a slightly soluble ionic compound, and as such dissolves only slightly in pure water. Instead of pure water, if this compound was dissolved in a dilute (low concentration) solution of sodium chloride(aq), would the strontium hydroxide be more soluble, less soluble, or have the same solubility compared to being dissolved in pure water?
a.The solubility would likely stay the same
b.It would become more soluble
c.It would become less soluble

Answers

Strontium hydroxide (Sr(OH)₂) is a slightly soluble ionic compound, and as such dissolves only slightly in pure water. Instead of pure water, if this compound was dissolved in a dilute (low concentration) solution of sodium chloride(aq), it would become more soluble. The correct Option is b).

Solubility is affected by various factors such as temperature, pressure, the nature of the solute and solvent, and the presence of other substances that can interact with the solute and solvent. Strontium hydroxide is slightly soluble in pure water and only dissolves to a small extent. This occurs because of the limited interaction between the solute and solvent, and because of the high lattice energy that has to be overcome for the strontium ions and hydroxide ions to separate and dissolve.

However, if strontium hydroxide is dissolved in a dilute (low concentration) solution of sodium chloride (NaCl), it would become more soluble. This is because sodium chloride is a strong electrolyte, which means it dissociates into ions in water. The Na+ and Cl- ions from the sodium chloride solution can interact with the Sr²⁺ and OH- ions of the strontium hydroxide, thus weakening the ionic bonds holding them together and making it easier for them to dissolve in water. Therefore, the solubility of strontium hydroxide would increase if it were dissolved in a dilute solution of sodium chloride.

Learn more about Solubility at https://brainly.com/question/9098308

#SPJ11

Summarize the basic properties and structure of polymers, explain the synthesis method, and give examples used in daily life.

Answers

Polymers are large molecules composed of repeating subunits called monomers.

They possess several unique properties: High molecular weight: Polymers have a high molecular weight, which contributes to their physical and mechanical properties. Chain-like structure: Polymers consist of long chains or networks of interconnected monomers. Diversity: Polymers exhibit a wide range of properties depending on the monomers used and their arrangement. Versatility: Polymers can be engineered to have specific properties, making them suitable for various applications. Thermal stability: Many polymers have high melting points and can withstand elevated temperatures.  The synthesis of polymers involves polymerization, which can occur through various methods: Addition Polymerization: Monomers with unsaturated bonds react to form a chain, such as in the synthesis of polyethylene. Condensation Polymerization: Monomers react, eliminating small molecules like water or alcohol, as seen in the formation of polyesters.

Ring-Opening Polymerization: Monomers with cyclic structures open and link together, as in the synthesis of polycaprolactam (nylon-6).Crosslinking: Monomers form covalent bonds between chains, resulting in a three-dimensional network, as in the production of rubber. Polymers are extensively used in daily life, including: Polyethylene: Used in packaging materials like plastic bags and bottles. Polypropylene: Found in various household items, such as containers and furniture. Polyvinyl chloride (PVC): Used in pipes, cables, and flooring. Polyethylene terephthalate (PET): Commonly used for beverage bottles. Polystyrene: Found in disposable utensils, insulation, and packaging materials. These examples illustrate the wide range of applications and the importance of polymers in our daily lives.

To learn more about Polymers click here: brainly.com/question/1443134

#SPJ11

"Synthesis gas may be produce by the catalyst reforming of methane with steam. The reactions are: CH4 (g)+H2O(g)→CO(g)+3H2 (g) A small plant is being to produce 600 mol/s of hydrogen (H2) by the reaction. 250 mol/s of Methane with 100 % of excess steam are fed to the heat exchanger at 150 °C and heated with superheated vapor. The superheated vapor inlet to the heat exchanger at 10 bar and 750 °C and leaved saturated at the same pressure. The mixture of methane and steam leaved the heat exchanger and inlet to the reactor at 600 °C. The products emerge from the reactor at 1000 °C. State any assumptions: Base the information above, do or answer the following: 1. Draw the diagram of the process. 2. Solve the mass balances. 3. Determine the CH4 conversion. 4. Determine the heat gained by the mixture of methane and steam in the heat exchanger [kW]. 5. Calculate the amount of superheated vapor fed to the heat exchanger [kg/s] 6. Determine the heat of reaction for the reaction at 25 °C in [kJ/mol] 7. Determine the heat lost/gained by the by the reactor [kW]

Answers

1. The process involves reforming methane with steam to produce synthesis gas. 2. Mass balances are solved to determine the reactant and product flow rates. 3. The CH4 conversion is calculated based on the reactant and product flow rates. 4. The heat gained by the mixture of methane and steam in the heat exchanger is determined.5. The amount of superheated vapor fed to the heat exchanger is calculated.6. The heat of reaction for the reforming reaction is determined. 7. The heat lost/gained by the reactor is calculated.

1. The diagram of the process involves a heat exchanger and a reactor. Methane and steam enter the heat exchanger, where they are heated with superheated vapor. The mixture then enters the reactor, and the products (synthesis gas) exit the reactor.

2. Mass balances are solved based on the given information. It is stated that 250 mol/s of methane with 100% excess steam are fed to the heat exchanger. Therefore, the flow rate of methane is 250 mol/s and the flow rate of steam is also 250 mol/s. The desired product is 600 mol/s of hydrogen (H2), so the flow rate of CO and H2 can be determined as well.

3. The CH4 conversion is calculated by comparing the initial moles of methane with the moles of methane that have reacted. In this case, all 250 mol/s of methane react, resulting in a 100% conversion.

4. The heat gained by the mixture of methane and steam in the heat exchanger can be determined using the equation Q = m * Cp * ΔT, where Q is the heat gained, m is the mass flow rate, Cp is the specific heat capacity, and ΔT is the temperature change. The specific heat capacity can be estimated based on the properties of methane and steam.

5. The amount of superheated vapor fed to the heat exchanger can be determined based on the energy balance. The energy gained by the mixture of methane and steam in the heat exchanger is equal to the energy supplied by the superheated vapor.

6. The heat of reaction for the reforming reaction at 25 °C can be determined using thermodynamic data and enthalpy calculations.

7. The heat lost/gained by the reactor can be calculated by considering the energy balance. The heat lost by the reactants entering the reactor is equal to the heat gained by the products leaving the reactor, taking into account any heat of reaction and the temperature change.

Learn more about methane : brainly.com/question/12645626

#SPJ11

Hi there,
can i please have some help with these TWO questions on
computational chem
1.2.
For a potential energy surface with two variables, R₁ and R₂, which of the follow state is a transition state dE d² E d² E = 0, < 0, and 0 dR dR² dE < 0, 0, and 0 dR dE = 0, < 0, and > 0 dR = =

Answers

The transition state is characterized by the condition that the first derivative of the energy with respect to both variables, R₁ and R₂, is zero. Therefore, the correct option is:

dE/dR₁ = 0 and dE/dR₂ = 0

To determine the transition state, we need to analyze the first derivatives of the energy with respect to the variables R₁ and R₂.

dE/dR₁ represents the partial derivative of the energy (E) with respect to R₁, and dE/dR₂ represents the partial derivative of the energy with respect to R₂.

For the transition state, both partial derivatives should be zero. This implies that the energy is at a stationary point where the system is undergoing a change from reactants to products.

The correct state for a transition state is when both partial derivatives of the energy with respect to R₁ and R₂ are zero: dE/dR₁ = 0 and dE/dR₂ = 0.

For a potential energy surface with two variables: R₁ and R2, what are these points? dE dE a. = 0 and a > 0 dR₁ dR2 dE dE d² E d² E b. = 0 and = 0 and >0 and >0 dR₁ dR₂ dR² dR² dE dE d² E d² E C. = 0 and = 0 and >0 and <0 dR₁ dR₂ dR² dR² dE dE d² E d. = 0 and = 0 and <0 and ·>0 dR₁ dR₂ dR² dE dE d² E = 0 and e. = 0 and <0 and <0 dR₁ dR₂ dR² d² E dR² d² E dR².

To learn more about transition, visit    

https://brainly.com/question/30835920

#SPJ11

Two common waste products in many oil refineries are hydrogen sulfide (H₂S) and sulfur dioxide (SO₂), and the following reaction suggests a way to get rid of both at the same time: 2H₂S(g) + SO�

Answers

The reaction 2H₂S(g) + SO₂(g) → 3S(s) + 2H₂O(g) suggests a way to simultaneously remove hydrogen sulfide (H₂S) and sulfur dioxide (SO₂) as waste products in oil refineries. The reaction results in the formation of solid sulfur (S) and water vapor (H₂O).

In the reaction 2H₂S(g) + SO₂(g) → 3S(s) + 2H₂O(g), hydrogen sulfide (H₂S) gas and sulfur dioxide (SO₂) gas react to produce solid sulfur (S) and water vapor (H₂O).

The stoichiometry of the reaction indicates that for every 2 moles of H₂S and 1 mole of SO₂, 3 moles of sulfur and 2 moles of water are formed.

This reaction offers a potential solution for simultaneous removal of H₂S and SO₂ in oil refineries. By introducing a suitable reactant, such as a catalyst or oxidizing agent, the H₂S and SO₂ emissions can be converted into solid sulfur, which can be further processed or safely disposed of, and water vapor, which can be released into the atmosphere or condensed and treated if required.

The reaction 2H₂S(g) + SO₂(g) → 3S(s) + 2H₂O(g) provides a way to effectively remove hydrogen sulfide (H₂S) and sulfur dioxide (SO₂) as waste products in oil refineries. The reaction converts these gases into solid sulfur and water vapor, which can be managed or treated accordingly. Implementation of this reaction or similar processes can contribute to reducing harmful emissions and improving the environmental sustainability of oil refining operations.

To know more about oil refineries, visit

https://brainly.com/question/12006663

#SPJ11

b) The specific gravity of acetone is 0.791 at 20 °C. Calculate the density of acetone in lb/ft³

Answers

The density of acetone at 20 °C can be calculated using its specific gravity of 0.791. The density of acetone is approximately 49.5 lb/ft³.

The specific gravity of a substance is the ratio of its density to the density of a reference substance, usually water. In this case, the specific gravity of acetone is given as 0.791 at 20 °C. To calculate the density of acetone in lb/ft³, we need to know the density of water at the same temperature. At 20 °C, the density of water is approximately 62.43 lb/ft³.

The formula to calculate the density of a substance using specific gravity is:

Density of substance = Specific gravity × Density of reference substance

Plugging in the values, we have:

Density of acetone = 0.791 × 62.43 lb/ft³

Calculating this, we find that the density of acetone is approximately 49.5 lb/ft³. Therefore, at 20 °C, the density of acetone is approximately 49.5 lb/ft³.

Learn more about density  : brainly.com/question/29775886

#SPJ11

Feed the feed C7H16-C8H18 mixture at 250C 1 atm (bubble point 1120C specific heat of feed 243.615kl/kgmole-ok) into continuous tower distillation, if feed F-100 kgmole/h, its concentration XF-0.4, top

Answers

The feed for the continuous tower distillation consists of a mixture of C7H16 and C8H18 with a flow rate of 100 kmol/h and a concentration of 0.4. The feed temperature is 25°C and the pressure is 1 atm. The bubble point of the feed is 112°C, and the specific heat of the feed is 243.615 kJ/kgmol·K.

In continuous tower distillation, the feed is introduced into the tower and undergoes separation based on the differences in boiling points of the components. The lighter components with lower boiling points tend to concentrate towards the top of the tower, while the heavier components with higher boiling points collect at the bottom.

To carry out the distillation process effectively, it is important to understand the properties of the feed mixture. In this case, the feed consists of a mixture of C7H16 and C8H18. The flow rate of the feed is given as 100 kmol/h, and the concentration of the mixture is 0.4, indicating that C7H16 and C8H18 make up 40% of the total mixture.

The temperature of the feed is 25°C (250K), and the pressure is 1 atm. The bubble point of the feed, which is the temperature at which the first bubble of vapor is formed, is 112°C (1120K).

The specific heat of the feed is provided as 243.615 kJ/kgmol·K. This value represents the amount of heat required to raise the temperature of one kilogram of the feed mixture by one degree Kelvin.

The given information provides the necessary details for the feed composition, flow rate, temperature, pressure, bubble point, and specific heat of the feed mixture for continuous tower distillation. These parameters are essential for designing and operating the distillation process effectively to separate the components based on their boiling points.

To learn more about distillation , visit

brainly.com/question/7072845


#SPJ11

Measurement of natural corrosion potential of buried pipe using saturated copper sulfate reference electrode. I got . Epipe -482 mVsce How much is this corrosion potential expressed by converting it to the standard hydrogen electrode potential? However, the standard potential value of the copper sulfate reference electrode is ESCE = +0.316 VSHE

Answers

To convert the corrosion potential expressed in saturated copper sulfate reference electrode (mVsce) to the standard hydrogen electrode potential (VSHE), you can use the following formula:

E(SHE) = E(sce) + E(ref)

where: E(SHE) is the potential with respect to the standard hydrogen electrode (VSHE) E(sce) is the potential with respect to the saturated copper sulfate reference electrode (mVsce) E(ref) is the reference potential of the saturated copper sulfate electrode (VSHE)

Given: E(sce) = -482 mVsce E(ref) = +0.316 VSHE

Converting the units of E(sce) to VSHE: E(sce) = -482 mVsce * (1 V/1000 mV) = -0.482 VSHE

Using the formula: E(SHE) = E(sce) + E(ref) E(SHE) = -0.482 VSHE + 0.316 VSHE

E(SHE) = -0.166 VSHE

Therefore, the corrosion potential expressed in terms of the standard hydrogen electrode potential is approximately -0.166 VSHE.

The corrosion potential, when converted to the standard hydrogen electrode potential, is approximately -0.166 VSHE.

To know more about corrosion, visit :

https://brainly.com/question/31313074

#SPJ11

Complete acid catalyzed mechanism for the dehydration of cyclohexanol, use an acid.

Answers

The acid-catalyzed dehydration of cyclohexanol involves protonation of cyclohexanol, loss of water to form a carbocation intermediate, protonation of the alkene intermediate, and deprotonation to yield the final product, cyclohexene.

The acid-catalyzed mechanism for the dehydration of cyclohexanol involves the use of an acid, typically sulfuric acid (H₂SO₄). Here is the step-by-step mechanism:

Step 1: Protonation of Cyclohexanol

Sulfuric acid (H₂SO₄) donates a proton (H⁺) to the oxygen atom of cyclohexanol, resulting in the formation of the oxonium ion intermediate.

    H₂SO₄ + Cyclohexanol  →  H₃O⁺ + Cyclohexanol

Step 2: Loss of Water Molecule

A base (typically water or another hydroxide ion in the reaction mixture) removes one of the hydrogen atoms on the neighboring carbon atom (alpha carbon) when the oxygen atom of the oxonium ion functions as a leaving group. A intermediate carbocation is created as a result.

       H₃O⁺ + Cyclohexanol  →  H₂O + Carbocation

Step 3: Protonation of the Alkene Intermediate

The carbocation intermediate is protonated by another molecule of sulfuric acid, which donates a proton (H⁺) to the carbon atom adjacent to the positively charged carbon. This results in the formation of the alkene intermediate.

       H₂SO₄ + Carbocation  →  H₃O⁺ + Alkene

Step 4: Deprotonation

The alkene intermediate is deprotonated in the presence of water or another base, often by the presence of water molecules in the reaction mixture. Cyclohexene, the end product, is created as a result.

       H₃O⁺ + Alkene  →  H₂O + Cyclohexene

To know more about dehydration, refer:

https://brainly.com/question/9225726

#SPJ4

1. Find the saturation pressure for the refrigerant R-410a at -80-C, assuming it is higher than the triple-point temperature.

Answers

The saturation pressure of R-410a at -80 °C is approximately 4498.84 kPa.

The refrigerant is R-410a, to find the saturation pressure at -80 °C, we can use a refrigerant property table or chart that lists the saturation pressures of R-410a at various temperatures.

However, since we are also given that the temperature is below the triple-point temperature, we cannot use the table/chart directly without making certain assumptions.

Here's how we can proceed: The triple-point temperature is the temperature at which the solid, liquid, and vapor phases of a substance coexist in thermodynamic equilibrium.

For R-410a, this temperature is -57.83 °C (215.32 K).

Since the given temperature of -80 °C is lower than the triple-point temperature, we know that the refrigerant is in the solid phase. Therefore, we can assume that it is at a pressure of 1 atm (101.325 kPa) since this is the saturation pressure of the solid phase under standard atmospheric conditions.

Alternatively, we can assume that the refrigerant is in the vapor phase and use a simple vapor pressure equation to estimate the saturation pressure. For R-410a, the vapor pressure can be approximated by the Antoine equation:

log10(p) = A - B/(T + C)

where p is the saturation pressure in kPa, T is the temperature in K, and A, B, and C are constants specific to R-410a.

For R-410a, the constants are:

A = 4.5597B = 1978.10C = -42.40

Using these values, we can solve for the saturation pressure at -80 °C (193.15 K):

log10(p) = 4.5597 - 1978.10/(193.15 - 42.40) = 5.6999p = 10^(5.6999) = 4498.84 kPa

Therefore, the saturation pressure of R-410a at -80 °C is approximately 4498.84 kPa.

Read more on Saturation pressure here: https://brainly.com/question/32509506

#SPJ11

A counter-flow double pipe heat exchanger with U = 200 W/m² °C is to be used to cool 1kg/s of oil (Cp=2000 J/kg:C) from 100°C to 30°C using 3 kg/s of water (Cp = 4184 J/kg:) at 20°C. Determine the surface area of the heat exchanger.

Answers

The required

surface area

of the heat exchanger is 3.94 m².

Given data:Mass flow rate of oil, m1 = 1kg/s

Specific heat

capacity

of oil, Cp1 = 2000 J/kg°

CInitial temperature of oil, T1 = 100°CFinal temperature of oil, T2 = 30°CMass flow rate of water, m2 = 3kg/s

Specific heat

capacity of water, Cp2 = 4184 J/kg°

CInitial temperature of water, T3 = 20°C

Heat transfer rate, Q = m1 x Cp1 x (T1 - T2) = m2 x Cp2 x (T4 - T3) = U x A x LMTD where, LMTD is log-mean temperature difference

Assuming

counter-flow

double pipe heat exchanger, the overall heat transfer coefficient, U = 200 W/m²°CThe log-mean temperature difference, LMTD = (T1 - T4) - (T2 - T3) / ln[(T1 - T4) / (T2 - T3)]

At maximum temperature difference, ΔT1 = T1 - T3 = 100 - 20 = 80°C and ΔT2 = T2 - T4 = 30 - x

At this condition, LMTD = (80 - x) / ln(80 / (30 - x)) = x / ln(53.33)

Solving this

equation

for x, we get, x = 46.08°C

Therefore, LMTD = (80 - 46.08) / ln(80 / 46.08) = 56.17°C

The heat

transfer rate

, Q = m1 x Cp1 x (T1 - T2) = 1 x 2000 x (100 - 30) = 140000 J/s = 140 kW

Also, Q = m2 x Cp2 x (T4 - T3) = 3 x 4184 x (x - 20) = 12552 x - 251040Solving this equation for x, we get, x = 54.8°C

Surface area of the heat exchanger, A = Q / (U x LMTD) = 140000 / (200 x 56.17) = 3.94 m²

Therefore, the surface area of the heat exchanger is 3.94 m².

Learn more about

flow rate

here,

https://brainly.com/question/31391370

#SPJ11

The concentration of ibuprofen
in the urine of a patient with impaired kidney function is
1.65 mg/mL, and the patient's rate of urine formation is 3.1
mL/min. The patient's plasma concentration of ibu

Answers

The patient's plasma concentration of ibuprofen can be calculated using the given concentration of ibuprofen in urine (1.65 mg/mL) and the rate of urine formation (3.1 mL/min).

To determine the patient's plasma concentration of ibuprofen, we can use the principle of mass balance. The rate of urine formation multiplied by the concentration of ibuprofen in urine represents the total amount of ibuprofen excreted per minute. This is equal to the rate of elimination of ibuprofen from the plasma.

Let's denote the plasma concentration of ibuprofen as Cp (in mg/mL).Rate of elimination = Rate of urine formation * Concentration of ibuprofen in urine.Rate of elimination = 3.1 mL/min * 1.65 mg/mLNow, the rate of elimination is also equal to the rate of clearance of ibuprofen from the plasma, which is given by:

Rate of clearance = Cp * urine flow rate.Rate of clearance = Cp * 3.1 mL/min.Since the rate of elimination and the rate of clearance are equal, we can equate the two equations:.Cp * 3.1 mL/min = 3.1 mL/min * 1.65 mg/mL.Cp = 1.65 mg/mL

The patient's plasma concentration of ibuprofen is 1.65 mg/mL. This calculation is based on the given concentration of ibuprofen in urine (1.65 mg/mL) and the rate of urine formation (3.1 mL/min). It's important to note that this calculation assumes a steady-state condition and does not account for factors such as absorption, distribution, metabolism, or elimination of ibuprofen. For accurate and comprehensive assessment of drug concentration in plasma, medical professionals should consider additional factors and conduct appropriate laboratory tests or analysis.

To know more about plasma visit:

https://brainly.com/question/31510915

#SPJ11

Other Questions
Consider different societal/cultural factors which can influenceabnormal psychology or behaviors. Select themes present in thetopics we have discussed this term and discuss how they might beconside A 3.0-kg block is dragged over a rough, horizontal surface by a constant force of 16 N acting at an angle of 37 above the horizontal as shown. The speed of the block increases from 3.0 m/s to 6.2 m/s in a displacement of 8.0 m. What work was done by the friction force during this displacement?a. 63 Jb. 44 Jc. 36 Jd. +72 Je. 58 J at 27C into an 2. An ideal gas expands isothermally evacuated vessel so that the pressure drops from 10bar to 1bar, it expands from a vessel of 2.463L into a connecting vessel such that the total vo "Adjusting entries are required by the historical cost principle of accounting." Do you agree? Explain. A liquid flows through a straight circular tube. Show in a figure how the pressure drop, P dependsof the average flow rate in the pipe, V ata) laminar flow in the tubeb) fully trained turbulent flow in the pipeJustify why the pressure drop P as a function of the average flow rate, V in yourfigure looks like this in cases a) and b).Also give which fluid properties affect the pressure drop in a) and b) respectively Design a series RLC bandpass filter. The center frequency of the filter is 12 kHz, and the quality factor is 4. Use a 7 uF capacitor. (Show your circuit) a) Specify the values of R and L. b) What is the lower cutoff frequency in kilohertz? c) What is the upper cutoff frequency in kilohertz? d) What is the bandwidth of the filter in kilohertz? USEVENN DIAGRAM5. In a school of 120 students it was found out that 75 read English, 55 read science ad 35 read biology. All the 120 students read at least one of the three subject and 49 read exactly two subjects. In general, the frequency spectrum of a human voice lies almost entirely: a. between zero and 300 Hz. b. between 300 Hz and 3400 Hz. c. in discrete states. d. at 3.4 kHz. Samuel was Eli's apprentice Explain the benefit of using pinch analysis in energy consumption in plant design. Relate your argument with capital and operational cost. Please answer ASAP I will brainlist A square transducer (10 cm X 10 cm) radiates 400 Watts of acoustic power at 100 kHz in seawater. A target in the centre of the beam, at a range of 30 m, has a backscatter crosssection of 80 cm2. Assume spherical spreading and that there is a scattering loss from inhomogeneities along the transmission path defined as a loss of 10% of the acoustic energy for every 30 m travelled. Determine the received intensity and pressure observed back at the transmitting transducer. Water pump station station is the workplace .Identify the problem which requires signal processing techniques to solve the problem. Analyze the problem and briefly discuss how this problem can be solved using using the knowledge of digital signal processing also include the knowledge of machine learning and artificial intelligence Solve for to the two decimal places, where 02. Show its CAST rule diagram as well. a) 12sin^2+sin6=0 b) 5cos(2)cos+3=0 A discharge petition is used in the House to:a. make revisions and additions to a bill before it is voted on.b. get a bill stalled in committee onto the floor.c. amend a bill that has already passed one house but not the other.d. override a presidential veto. Allanah has declared psychology as her major. Which of the following alternatives best identifies what Allanah will study?mental processesmind and behaviorpsychological disorders and their treatmentthe development of the individual Explain how Internet Control Message Protocol (ICMP) helps in testing network connectivity. Consider a graph \( G=(V, E) . V=\{a, b, c, d, e, f, g, h, i, j\} \) and \( E=\{\{f, h\},\{e, d\},\{c, b\},\{i, j\},\{a, b\},\{i, f\},\{f, j\}\} \) which of the follwing is true about (g)? A. It is not a connected component because there is no {g} in E. B. It is not a connected component because there is no {g} in V. C. It is a connected component. D. It is not a connected component because {g} is just a single node. What should be the drug to consider if the patient hastremor (PD) and how this will improve C++ Program to make Rat in mazeTopics which will be used in this Project:FunctionsFillingPointers2D ArraysDynamic MemoryYou have to make a game in which rat will find the path from source to reach destination position.A Maze is given as N*N matrix of blocks where source block is the upper left most block i.e., maze[0][0] and destination block is lower rightmost block i.e., maze[N-1][N-1]. A rat starts from source and has to reach the destination. The rat can move in multiple direction. Possible directions can be Right, Left, Up and down.In the maze matrix, 0 means the block is a dead end and 1 means the block can be used in the path from source to destination. You have to use other number like -2 to decrease the lives of rat.Major Functionalities:1) Start New GameUser will start new Game by entering his/her name and their scores must be maintained.2) Pause/Resume GameIt will save the state of game. It will then started from where the user left the game.3) Levels (Easy, Medium, Hard)On users selection of level, you will select the maze of that complexity. You will make multiple files for multiple levels and you have to load these levels on users selection.4) Show Highest Score TableShow Scores of each player. You have to store the score in ascending order in file name as "scores.txt"5) ExitExit the game by storing the score of user.Functionalities Required::1) Load Maze:You have to load maze from file on users level selection. You will keep the original maze without showing it. As, user will find the way, you will show that path in that similar way.You have to show the proper maze as shown above diagram based upon the 0,1 and -2.0 will represents the way is blocked. 1 will represents the way is open. And you can show any monster image on -2, while creating maze.2) Check Move:You have to check whether the specific move is possible or not. Like if you stand on first box, then you cant able to move up, right (Backward).3) Is Safe:a. Check whether the specific move is safe or blockage. If blocked, then you cantable to move in that direction. You have to find another way for it.b. And if user will hit -2 in box, then you have to reduce the life of rat. Max lives can be 3.4) Update Score:a. Increase Score:i. Score will be increased by 5, if user will find the box successfully. b. Decrease Score:i. If user will find -2 block then it will be reduced by 5 and also one life will be decreased.ii. If user will find block of (0), then it will be reduced by -1.5) Show Full path :You have to show the full path from where the user pass away.6) Save user ScoreYou have to save the users scores against his/her name.7) Show High Score:You have to show the High Score table and their respective names.