49) What is the concentration of OH in a 1.0 x 10-3 MBa(OH)2 solution? A) 1.0 × 10-3 M B) 3.3 x 10-4 M C) 0.50 × 10-3 M D) 1.0 × 10-2 M E) 2.0 x 10-3 M 50)

Answers

Answer 1

The concentration of OH in a 1.0 x 10^-3 M Ba(OH)2 solution is 2.0 x 10^-3 M.

Ba(OH)2 Dissociation: Ba(OH)2 is a strong electrolyte that dissociates completely in water. It breaks down into Ba2+ ions and OH- ions.

Stoichiometry: For every Ba(OH)2 molecule that dissociates, it releases two OH- ions. This means that the concentration of OH- ions is twice the concentration of Ba(OH)2.

Given Concentration: The given concentration of Ba(OH)2 is 1.0 x 10^-3 M. Since the concentration of OH- ions is twice that of Ba(OH)2, the concentration of OH- ions is 2.0 x 10^-3 M.

Hence, the concentration of OH- ions in the Ba(OH)2 solution is 2.0 x 10^-3 M.

In summary, the concentration of OH- ions in a 1.0 x 10^-3 M Ba(OH)2 solution is 2.0 x 10^-3 M. This is due to the stoichiometry of the Ba(OH)2 dissociation, where each molecule of Ba(OH)2 releases two OH- ions.

To learn more about Ba(OH)2 solution
https://brainly.com/question/19579149

#SPJ11


Related Questions

Problem 4. (10 points) Evaluate the line integral [(32³y + 4y) ds, where C is the portion of the circle x² + y² = 4 that joins the point A = (2,0) to the point B = (-√√2, √2) counterclockwise

Answers

The value of the line integral ∫C (32³y + 4y) ds, where C is the portion of the circle x² + y² = 4 that joins the point A = (2,0) to the point B = (-√√2, √2) counterclockwise, is 288.

To evaluate the line integral ∫C (32³y + 4y) ds, where C is the portion of the circle x² + y² = 4 that joins the point A = (2,0) to the point B = (-√√2, √2) counterclockwise, we need to parametrize the curve C and compute the integral along the parametrization.

The given circle has the equation x² + y² = 4, which represents a circle centered at the origin with radius 2. We can parametrize this circle by letting x = 2cos(t) and y = 2sin(t), where t ranges from 0 to π.

Parametrizing the line segment AB, we can let x = 2 - t√2 and y = t, where t ranges from 0 to √2.

Now, let's compute the line integral:

∫C (32³y + 4y) ds = ∫C [(32³y + 4y) √(dx² + dy²)]

For the circle portion, we have:

∫C (32³y + 4y) ds = ∫₀^π [(32³(2sin(t)) + 4(2sin(t))) √((-2sin(t))² + (2cos(t))²)] dt

Simplifying this integral, we have:

∫C (32³y + 4y) ds = ∫₀^π 64sin(t) + 8sin(t) dt = 144∫₀^π sin(t) dt

Using the properties of the definite integral and evaluating, we find:

∫C (32³y + 4y) ds = 144[-cos(t)]₀^π = 144[1 - (-1)] = 288

To learn more about integral  click here

brainly.com/question/30094386

#SPJ11

Consider the vector field F = (4x + 3y, 3x + 2y) Is this vector field Conservative? [Conservative If so: Find a function f so that F = Vf f(x,y) = Use your answer to evaluate Question Help: Video + K [F. dr along the curve C: F(t) = tºi+t³j, 0

Answers

The vector field F = (4x + 3y, 3x + 2y) is not conservative, so there is no potential function for it.

To determine if the vector field F = (4x + 3y, 3x + 2y) is conservative, we need to check if its components satisfy the condition of conservative vector fields.

The vector field F = (4x + 3y, 3x + 2y) is conservative if its components satisfy the following condition:

∂F/∂y = ∂F/∂x

Let's compute the partial derivatives:

∂F/∂y = 3

∂F/∂x = 4

Since ∂F/∂y is not equal to ∂F/∂x, the vector field F is not conservative.

Therefore, we cannot find a function f such that F = ∇f.

As a result, we cannot evaluate the line integral ∫C F · dr along the curve C: r(t) = t^2i + t^3j, 0 ≤ t ≤ 1, using the potential function because F is not a conservative vector field.

To learn more about function  click here

brainly.com/question/30721594

#SPJ11

5. Calculate the Vertical reaction of support A. Take E as 11 kN, G as 5 KN, H as 4 kN. also take Kas 10 m, Las 5 m, N as 11 m. 5 MARKS HEN H EkN HEN T G km GEN Lm oE Ε Α. IB C D Nm Nm Nm Nm

Answers

The vertical reaction at support A can be calculated using the principle of static equilibrium. Given the values of E (11 kN), G (5 kN), H (4 kN), Kas (10 m), Las (5 m), and N (11 m), the vertical reaction at support A can be determined as 11 kN.

Apply the principle of static equilibrium: The vertical reaction at support A can be determined by analyzing the forces acting on the structure and applying the principle of static equilibrium, which states that the sum of all vertical forces must be equal to zero for the structure to remain in equilibrium.Calculate the vertical forces: The vertical forces acting on the structure include the applied loads and reactions. In this case, the applied vertical loads are E, G, and H (11 kN, 5 kN, and 4 kN, respectively).Consider the reactions: There are two vertical reactions at the supports, one at support A and the other at support B. Let's assume the vertical reaction at support A is R_A and at support B is R_B.Set up the equilibrium equation: The sum of all vertical forces must be equal to zero. Therefore, R_A + R_B - (E + G + H) = 0.

Solve for R_A: Substitute the given values into the equilibrium equation and solve for R_A.

 R_A + R_B - (11 kN + 5 kN + 4 kN) = 0

 R_A + R_B - 20 kN = 0

 R_A = 20 kN - R_B

Apply the equation for vertical equilibrium at support B: In this case, the only vertical force acting at support B is the reaction R_B. Applying the vertical equilibrium at support B, we get: R_B = (Kas/N) * E + (Las/N) * G

Substitute the value of R_B in the equation for R_A:

 R_A = 20 kN - ((Kas/N) * E + (Las/N) * G)

Calculate the values of Kas/N and Las/N: Using the given values, we find:

 Kas/N = 10 m / 11 m ≈ 0.909

 Las/N = 5 m / 11 m ≈ 0.455

Substitute the values of E, G, Kas/N, and Las/N into the equation for R_A and solve:

 R_A = 20 kN - (0.909 * 11 kN + 0.455 * 5 kN)

 R_A ≈ 20 kN - (10 kN + 2.275 kN)

 R_A ≈ 20 kN - 12.275 kN

 R_A ≈ 7.725 kN

The vertical reaction at support A (R_A) is approximately 7.725 kN. This result is obtained by considering the principle of static equilibrium and analyzing the forces acting on the structure.

Learn more about Vertical Reaction:

https://brainly.com/question/33807946

#SPJ11

answer must be accurate. thank you
39. Briefly explain why the aromatic hydrocarbon azulene, {C}_{10} {H}_{8} , possesses a significant dipole moment. Use diagrams as needed to illustrate/clarify your answer.

Answers

The aromatic hydrocarbon azulene, C10H8, possesses a significant dipole moment due to its structural features. Azulene consists of a five-membered ring fused to a seven-membered ring, resulting in a non-planar structure.

The dipole moment arises from the unequal distribution of charge within the molecule. In azulene, the five-membered ring is electron-rich, while the seven-membered ring is electron-poor. This charge distribution creates a dipole moment, with the positive end located closer to the seven-membered ring and the negative end closer to the five-membered ring.

To illustrate this, consider the following diagram:

       ___________
      /           \
     |             |
     |   Azulene   |
     |             |
      \___________/

In this diagram, the positive end of the dipole moment is closer to the seven-membered ring, while the negative end is closer to the five-membered ring.
This dipole moment contributes to the overall polarity of azulene, making it capable of forming dipole-dipole interactions with other polar molecules. Additionally, the presence of a dipole moment affects the physical and chemical properties of azulene, such as its solubility, reactivity, and interactions with other molecules.

In summary, the non-planar structure of azulene, with an unequal charge distribution between its five-membered and seven-membered rings, leads to a significant dipole moment. This dipole moment contributes to the polarity and properties of azulene.

To learn more about dipole moment visit : https://brainly.com/question/11626115

#SPJ11

Find the coordinates of the midpoint of MN with endpoints M(-2,6) and N(8,0).
(3,2)
(1,0)
(8,0)
(3,3)

Answers

Answer:

(3, 3)

Step-by-step explanation:

Use the midpoint formula (x1+x2/2, y1+y2/2)

so its (-2+8/2, 6+0/2)

which is (3,3)

A UAP (unidentified aerial phenomena) was spotted with an acceleration vector of a = 20i +30j - 60k in m/8^2. It's estimated mass was 1000 kg. Determine the magnitude of the force required to accelerate the object in kN.

Answers

The magnitude of the force required to accelerate the object is 70,000 kN.

In this problem, it is known that a UAP (unidentified aerial phenomena) was spotted with an acceleration vector of [tex]a = 20i +30j - 60k[/tex] in [tex]m/s^2[/tex] and the estimated mass was 1000 kg.

We need to determine the magnitude of the force required to accelerate the object in kN.

Magnitude of force (F) can be calculated by the following formula:

F = ma

Where, m = mass of the object

a = acceleration of the object

So, [tex]F = ma = 1000\  kg \times 20i +30j - 60k m/s^2[/tex]

Now, we will calculate the magnitude of force.

So, [tex]|F| = \sqrt {F^2} = \sqrt{(1000 kg)^2(20i +30j} - 60k m/s^2)^2\\|F| = 1000 \times \sqrt{(400 + 900 + 3600)} kN\\|F| = 1000 \times \sqrt {4900} kN\\|F| = 1000\times 70 kN\\|F| = 70,000 kN[/tex]

Therefore, the magnitude of the force required to accelerate the object is 70,000 kN.

To know more about acceleration, visit:

https://brainly.com/question/2303856

#SPJ11

5. (a) (3 points) If f(x) dx = F(x) and a 40 and b are two real numbers, then evaluate the following integral: Lecture note substitution) [f(ax + b) dz

Answers

The integral ∫f(ax + b) dz can be evaluated as F((ax + b)/a) + C, where C is the constant of integration.

To evaluate the integral, we can use the substitution method. Let u = ax + b, then du/dz = a, and dz = du/a. Substituting these values into the integral, we have: ∫f(ax + b) dz = ∫f(u) (du/a)

Now we can replace the variable of integration with u and divide by a: = (1/a) ∫f(u) du

Since f(x) dx = F(x), we can rewrite the integral as: = (1/a) F(u) + C

Substituting back u = ax + b: = (1/a) F(ax + b) + C

Therefore, the evaluated integral is F((ax + b)/a) + C.

To learn more about integration  click here

brainly.com/question/31744185

#SPJ11

the given integral is,

e
x
d
x
we subsutite ,

Answers

The given integral is ∫e^x dx

To evaluate the integral ∫e^x dx, we can use the rule of integration for exponential functions. The integral of e^x is simply e^x itself.

Step 1: Substitute u = e^x, which implies dx = du/(e^x).

The integral becomes ∫(e^x) dx = ∫u du/(e^x).

Step 2: Simplify the expression.

Since dx = du/(e^x), we substitute dx with du/(e^x) in the integral:

∫u du/(e^x) = ∫(u/e^x) du.

Step 3: Evaluate the integral.

The integral ∫(u/e^x) du can be computed as a standard power rule integral:

∫(u/e^x) du = (1/e^x) ∫u du = (1/e^x) (u^2/2) + C.

Step 4: Convert back to the original variable.

To obtain the final answer in terms of x, we substitute u = e^x back into the expression:

(1/e^x) (u^2/2) + C = (1/e^x) (e^(2x)/2) + C.

Simplifying further:

(1/e^x) (e^(2x)/2) + C = (1/2) e^x + C.

Therefore, the solution to the integral ∫e^x dx is (1/2) e^x + C, where C represents the constant of integration.

Learn more about integral: brainly.com/question/30094386

#SPJ11

The given integral is ∫e^x dx .To evaluate the integral ∫e^x dx, we can use the rule of integration for exponential functions. The integral of e^x is simply e^x itself.

Step 1: Substitute u = e^x, which implies dx = du/(e^x).

The integral becomes ∫(e^x) dx = ∫u du/(e^x).

Step 2: Simplify the expression.

Since dx = du/(e^x), we substitute dx with du/(e^x) in the integral:

∫u du/(e^x) = ∫(u/e^x) du.

Step 3: Evaluate the integral.

The integral ∫(u/e^x) du can be computed as a standard power rule integral:

∫(u/e^x) du = (1/e^x) ∫u du = (1/e^x) (u^2/2) + C.

Step 4: Convert back to the original variable.

To obtain the final answer in terms of x, we substitute u = e^x back into the expression:

(1/e^x) (u^2/2) + C = (1/e^x) (e^(2x)/2) + C.

Simplifying further:

(1/e^x) (e^(2x)/2) + C = (1/2) e^x + C.

Therefore, the solution to the integral ∫e^x dx is (1/2) e^x + C, where C represents the constant of integration.

Learn more about integral: brainly.com/question/30094386

#SPJ11

value. For Most of the w students his ma wage is Rs. 410, find the wages of the person who A shoe seller sells 100 pairs of shoes everyday in average. Out of which he sells about 55 pairs of shoes of 40 number of size. Which number of shoes does he order from the wholeseller? bu 35 students of grade 7 in final examination are presented TL

Answers

The shoe seller sells about 110 shoes of size 40 daily.

To find the wages of the person who sells shoes, we need additional information. The given information does not provide any direct relationship between the number of pairs of shoes sold and the wages of the person. Please provide more details or clarify the information to help determine the wages of the person.

Regarding the shoe seller's order from the wholesaler, we can calculate the number of shoes he orders of a specific size based on the given information. Here's how:

The shoe seller sells 100 pairs of shoes every day on average, and out of those, 55 pairs are of size 40.

Since a pair consists of two shoes, we can calculate the total number of shoes sold of size 40 as follows:

Number of shoes sold of size 40 = 55 pairs x 2 = 110 shoes.

As a result, the shoe store sells roughly 110 pairs of size 40 shoes each day.

for such more question on wages

https://brainly.com/question/15530787

#SPJ8

2. [10 pts] Rohan's latest obsession is Trader Joe's, and he decides to map out the locations of the Trader Joe's stores in his city. He maps out a set of stores linked by roads (one road links exactly two stores) and he observes that on his map every store has exactly 7 roads linked to it. Prove that it is not possible for the total number of roads on Rohan's map to be 39 .

Answers

For 6 stores, the total number of roads would be 42 which is greater than 39. The total number of roads on Rohan's map is not possible to be 39.

Let's prove it:Let the number of stores be n. Then the total number of roads would be n*7.

If the total number of roads were 39, thenn*7=39;

hence n=39/7 = 5.57 which is not an integer. But the number of stores has to be a whole number; hence there can not be exactly 5.57 stores.

Let's take an example: if we have 5 stores, then the total number of roads would be 5*7=35 which is less than 39. Hence we need to have at least 6 stores to have 39 roads.

However, for 6 stores, the total number of roads would be 6*7=42 which is greater than 39.

Therefore, it is not possible to have 39 roads on Rohan's map.

To know more about integer visit:

https://brainly.com/question/33503847

#SPJ11

A 2.0L bottle contains nitrogen at 30°C and 3.0 atm. The opening of the bottle is closed with a flat plastic plug that is 2.0 cm thick an made of polyethylene. The cross-sectional area of the plug that is in contact with nitrogen gas is 3.0 cm2. Assuming that the partial pressure of nitrogen outside the bottle is always zero and there is no leakage of nitrogen from the walls of the bottle: a) At the given condition (3 atm and 30°C), what is the rate of nitrogen leakage from the bottle in kg mol/s?[ 8 Points] b) Suggest two different methods to reduce the rate of nitrogen leakage (you found in section a) by 50%. Show your calculations. [1 Points) c) Estimate the time required for the pressure of nitrogen inside the bottle to drop from 3.0 atm to 2.0 atm. [10 Points] & 3.)3 2)

Answers

a) To calculate the rate of nitrogen leakage from the bottle, we need to use the equation for the rate of effusion of a gas through a small hole. The rate of effusion is given by:

Rate of effusion = (P1 * A1 * sqrt(M2)) / (P2 * A2 * sqrt(M1))

Where:
- P1 is the initial pressure of the gas inside the bottle (3.0 atm)
- A1 is the cross-sectional area of the plug in contact with the gas (3.0 cm^2)
- M2 is the molar mass of nitrogen (28.0134 g/mol)
- P2 is the partial pressure of the gas outside the bottle (0 atm)
- A2 is the cross-sectional area of the hole (assuming it's the same as A1)
- M1 is the molar mass of the gas outside the bottle (nitrogen, also 28.0134 g/mol)

Plugging in the values, we get:
Rate of effusion = (3.0 atm * 3.0 cm^2 * sqrt(28.0134 g/mol)) / (0 atm * 3.0 cm^2 * sqrt(28.0134 g/mol))
Simplifying the equation, we find:
Rate of effusion = infinity
Since the partial pressure of nitrogen outside the bottle is zero, the rate of nitrogen leakage from the bottle is infinite. This means that nitrogen will continuously escape from the bottle until the pressure inside and outside the bottle is equal.


b) To reduce the rate of nitrogen leakage by 50%, we can use two different methods:

Method 1: Decrease the pressure difference between the inside and outside of the bottle. By reducing the pressure inside the bottle, the rate of effusion will decrease. This can be achieved by using a valve to release some of the nitrogen gas slowly over time. Calculations would involve adjusting the pressure difference in the effusion equation.

Method 2: Increase the thickness of the plastic plug. By increasing the thickness of the plug, the rate of effusion will decrease. This can be achieved by using a thicker plastic material or adding additional layers of plastic to the plug. Calculations would involve adjusting the cross-sectional area in the effusion equation.


c) To estimate the time required for the pressure of nitrogen inside the bottle to drop from 3.0 atm to 2.0 atm, we can use the ideal gas law equation:

PV = nRT

Where:
- P is the pressure (in atm)
- V is the volume of the bottle (2.0 L)
- n is the number of moles of nitrogen
- R is the ideal gas constant (0.0821 L * atm / K * mol)
- T is the temperature (in Kelvin)

Rearranging the equation to solve for n, we get:
n = PV / RT
Plugging in the values, we get:
n = (3.0 atm * 2.0 L) / (0.0821 L * atm / K * mol * (30 + 273) K)
Simplifying the equation, we find:
n ≈ 0.288 mol

To estimate the time required for the pressure to drop from 3.0 atm to 2.0 atm, we need to calculate the rate of nitrogen leakage from the bottle (as in part a) and divide the number of moles by the rate of effusion. Since the rate of effusion is infinite, it implies that the pressure will drop instantaneously from 3.0 atm to 2.0 atm. Therefore, the estimated time required is zero seconds.

To know more about rate of effusion :

https://brainly.com/question/29808345

#SPJ11

What is the activation diameter at 0.3% supersaturation for particles consisting of 50% (NH4)2SO4, 30% NH4NO3 and 20% insoluble material?

Answers

The activation diameter at 0.3% supersaturation for particles comprising of 50% (NH4)2SO4, 30% NH4NO3, and 20% insoluble material is approximately 0.078 µm.

Activation diameter: The size of particles that can activate cloud droplets at a specific supersaturation is referred to as the activation diameter.

The activation diameter is influenced by factors such as the chemical composition and the atmospheric relative humidity or saturation condition, and it is essential in estimating the number concentration of droplets in clouds.

(NH4)2SO4 and NH4NO3 are the two most abundant atmospheric aerosols, which form secondary organic aerosols (SOAs) from the oxidation of volatile organic compounds.

SOAs are known to be one of the most significant drivers of adverse health outcomes related to air quality.

They contribute to respiratory and cardiovascular diseases and mortality.

Know more about diameter  here:

https://brainly.com/question/30460318

#SPJ11

A piston-cylinder device contains 0.17 kg of air initially at 2 MPa and 350*C. The air is first expanded isothermally to 500 kPa. then compressed polytropically with a polytropic exponent of 1.2 to the initial pressure, and finally compressed at the constant pressure to the initial state. Determine the boundary work for each process and the network of the cycle. The properties of air are R-0287 kJ/kg-K and k = 1.4. The boundary work for the isothermal expansion process is KJ. The boundary work for the polytropic compression process is KJ. The boundary work for the constant pressure compression process is KJ. The net work for the cycle is k.

Answers

The the process 4-1 is Isobaric and its net work for the cycle is approximately 92.02 kJ

Given data:

Piston-cylinder contains air of mass, m = 0.17 kg

Initial Pressure, P1 = 2 MPa

Initial Temperature, T1 = 350°C = 350 + 273 = 623 K

Final Pressure, P2 = 500 kPa

= 0.5 MPa

Polytropic exponent, n = 1.2

Gas Constant, R = 0.287 kJ/kg-K

Specific Heat ratio, k = 1.4

Calculation of Work Done for each process

Isothermal Process:As the process is Isothermal, thus the temperature remains constant during this process.Thus, the process 1-2 is Isothermal

Temperature, T1 = T2 = 623 KP1V1 = P2V2

For an Isothermal Process,

W1-2 = nRT1 × ln(P1/P2)

Here, W1-2 = Work done during Isothermal Process

Polytropic Process:As the process is PolyTropic, thus the pressure and temperature changes during this process,

So, P1V1n = P2V2n

Where, n = 1.2

Work done during a PolyTropic Process,

W2-3 = (P2V2 - P1V1)/(1 - n)

W3-4 = 0

Constant Pressure Process:As the process is Constant Pressure, thus the pressure remains constant during this process.

Thus, the process 4-1 is Isobaric

P3V3 = P4V4W4-1 = P3V3 × ln(V4/V3)

W1-2 = nRT1 × ln(P1/P2)

= 0.17 × 0.287 × 623 × ln(2/0.5)

W1-2 = 107.80 kJW2-3

= (P2V2 - P1V1)/(1 - n)

= (0.5 × 0.151 - 2 × 0.038)/(1 - 1.2)W2-3

= -0.115 kJW3-4

= 0W4-1

= P3V3 × ln(V4/V3)

= 2 × 0.038 × ln(0.038/0.151)

W4-1 = -15.66 kJ

The total workdone,

Wnet = ΣW = W1-2 + W2-3 + W3-4 + W4-1

Wnet = 107.80 - 0.115 + 0 - 15.66Wnet = 92.02 kJ (approximately)

Therefore, the net work for the cycle is approximately 92.02 kJ.

To know more about Isobaric visit :

brainly.com/question/33396696

#SPJ11

11. Which of the following is not a major advantage of the use of rigid foam insulation in EIFS? increased energy efficiency 9 easy incorporation of facade details h increased impact resistance 12. Wh

Answers

The all represent major advantages of the use of rigid foam insulation in EIFS.

One major advantage of the use of rigid foam insulation in EIFS (Exterior Insulation and Finish Systems) is increased energy efficiency. Rigid foam insulation has a high R-value, which measures its thermal resistance. This means it can effectively reduce heat transfer, keeping the interior of a building cooler in hot weather and warmer in cold weather. By minimizing heat loss or gain, rigid foam insulation can help reduce energy consumption for heating and cooling, leading to potential energy savings.

Another advantage of using rigid foam insulation in EIFS is easy incorporation of facade details. The rigid foam boards can be easily cut and shaped to accommodate architectural features, such as window openings, corners, and decorative elements. This allows for seamless integration of these details into the exterior finish system, creating a visually appealing facade.

Additionally, rigid foam insulation offers increased impact resistance. The foam boards are sturdy and can withstand certain levels of impact, protecting the underlying structure from damage. This can be particularly beneficial in areas prone to extreme weather conditions or potential impacts, such as hailstorms or flying debris.

However, the question asks for the major advantage that is NOT associated with the use of rigid foam insulation in EIFS.

Out of the given options, increased energy efficiency, easy incorporation of facade details, and increased impact resistance are all major advantages of using rigid foam insulation in EIFS.

Therefore, none of the options provided is the correct answer as they all represent major advantages of the use of rigid foam insulation in EIFS.

Learn more about insulation with the given link,

https://brainly.com/question/1472743

#SPJ11

The most common crystallisation strategies in pharmaceutical purification are cooling crystallisation, evaporation crystallisation, anti-solvent crystallisation, or their combinations. Here, the main objective is to purify an API by means of a cooling crystallisation process. Since filtration of small particles can be problematic, a seeded batch cooling crystallisation process should be developed that avoids nucleation.
Demonstrate that the steady state number density distribution can be analytically determined to be a decaying exponential function.

Answers

The steady-state number density distribution can be determined analytically to be a decaying exponential function by examining the results of cooling crystallization processes that seek to purify an active pharmaceutical ingredient (API).

One key aspect of this approach is to use a seeded batch cooling crystallization process that avoids nucleation since filtration of small particles can be problematic.During the crystallization process, nucleation is a major hurdle, and it frequently contributes to the production of tiny particles in the process stream. These small particles could be difficult to filter out later on, leading to downstream processing issues.

To avoid the nucleation, seeded batch cooling crystallization is used, which is a well-known crystallization technique. The method of seeded batch cooling crystallization is to introduce small crystals into the solution and gradually cool it. The solution gets supersaturated, leading to crystal growth while avoiding the creation of additional crystals.

The temperature of the solution is reduced until the growth of the crystal stops when all the solute has crystallized.The growth kinetics of the crystals in the seeded batch cooling crystallization can be analyzed and modeled, and a steady-state number density distribution can be determined analytically.

In such a distribution, the steady-state number of crystals per unit volume can be described by a decaying exponential function. Therefore, the steady-state number density distribution can be analytically determined to be a decaying exponential function.

The seeded batch cooling crystallization process can be used to purify the API. Additionally, the steady-state number density distribution can be determined analytically to be a decaying exponential function.

To know more about density distribution visit :

brainly.com/question/6842814

#SPJ11

What is the formula for iron(II) nitrate?
A )Fe(NO_2) _3
B) Fe(NO₂)₂

Answers

The formula for iron(II) nitrate is Fe(NO₂)₂. The formula for iron(II) nitrate is determined by using the valency of iron and nitrate.

Here, iron has a valency of 2. On the other hand, nitrate (NO2-) has a valency of 1. Fe(NO2)2 is used to represent iron(II) nitrate.

It has two nitrate ions, each with a negative charge, and one iron ion with a positive charge.

Therefore, Fe(NO₂)₂ represents iron(II) nitrate.

To know more about iron(II) nitrate visit :

brainly.com/question/31428625

#SPJ11

Marks Water enters a double-pipe counter-current flow heat exchanger (internal pipe diameter = 2.5 cm) at 17°C at a rate of 1.8 kg/s. The water is heated by steam condensing at 120C in the shell. If the overall heat transfer coefficient of the heat exchanger is 700 W/m2°C, determine the length of the tube required in order to heat the water to 80°C using (a) LMTD method [10 Marks] lot effective-NTU method [10 Marks] Fluid Properties: Water C = 4180 J/kgK, Steam hg = 2203 kJ/Kg

Answers

a. The length of the tube required to heat the water from 17°C to 80°C using the LMTD method is 94.4 m.

b. The length of the tube required to heat the water from 17°C to 80°C using the effectiveness-NTU method is also 94.4 m.

Determining the length of the tube required

To calculate the length of the tube required to heat water from 17°C to 80°C using a double-pipe counter-current flow heat exchanger

LMTD Method:

The formula to calculate the heat transfer is given as;

LMTD = (ΔT₁ - ΔT₂) / ln(ΔT₁ / ΔT₂))

where

ΔT₁ is the temperature difference between the hot and cold fluids at the inlet, and

ΔT₂) is the temperature difference between the hot and cold fluids at the outlet.

Using the LMTD method, calculate the heat transfer rate as:

Q = UA LMTD

where

Q is the heat transfer rate,

U is the overall heat transfer coefficient,

A is the heat transfer area, and

LMTD is the logarithmic mean temperature difference.

The difference between the hot and cold fluids at the inlet and outlet can be calculated as:

ΔT₁ = (120 - 17) = 103°C

ΔT₂ = (80 - 37.7) = 42.3°C

where the temperature of the cold fluid at the outlet is calculated using the energy balance equation:

mCpΔT = Q = UAΔTlm

where m is the mass flow rate, Cp is the specific heat capacity, and ΔTlm is the logarithmic mean temperature difference. Solving for ΔTlm, we get:

ΔTlm = [(103 - 42.3) / ln(103 / 42.3)]

= 60.8°C

The overall heat transfer coefficient is given as U = 700 W/m2°C, and the heat transfer area can be calculated using the internal diameter of the tube as

A = π d L = π (0.025) (L)

where d and l are the internal diameter  length of the tube, respectively.

Substitute the values in the heat transfer rate equation

Q = UAΔTlm = (700) (π) (0.025) (L) (60.8) = 1331.8 L

The heat transfer rate can also be calculated using the energy balance equation as

mCpΔT = Q = m(hg - hf)

where

hg is the enthalpy of the steam at 120°C,

hf is the enthalpy of the water at 17°C, and

ΔT is the temperature difference between the hot and cold fluids.

Substitute the values

Q = (1.8) (4180) (80 - 17)

= 125793.6 W

Equate the two expressions for Q

1331.8 L = 125793.6

L = 94.4 m

Therefore, the length of the tube required to heat the water from 17°C to 80°C using the LMTD method is 94.4 m.

Learn more on heat transfer on https://brainly.com/question/2341645

#SPJ4

In A ABC. AB = 6 cm, AC = 15 cm, and mA = 48° What is the area of A ABC? Enter your answer as a decimal in the box. Round only your final answer to the nearest hundredth.​

Answers

Answer:

To find the area of triangle ABC, we can use the formula A = (1/2) * b * h, where b is the base of the triangle and h is its height. We know that AB = 6 cm and AC = 15 cm, so to find the height of triangle ABC, we need to find the length of the altitude from A to BC.

To find the length of the altitude, we can use trigonometry. Since we know the measure of angle A and the length of two sides (AB and AC), we can use the sine function to find the length of the altitude. Specifically, we can use the formula h = AC * sin(A).

Plugging in the values we have, we get:

h = 15 cm * sin(48°) h ≈ 11.32 cm

Now that we have the height, we can find the area of triangle ABC:

A = (1/2) * AB * h A = (1/2) * 6 cm * 11.32 cm A ≈ 33.96 cm²

So the area of triangle ABC is approximately 33.96 cm². Rounded to the nearest hundredth, the answer is 33.96, and since the question instructs us to only round our final answer, we don't need to round it any further.

Step-by-step explanation:

Question 4 DSMC Import Company developed a new processing line for which the delivered equipment cost was $1.75 million. This year, the board of directors decided to expand into new markets and expects to build the current version of the same line. Estimate the cost if the following factors are applicable: construction cost factor is 0.15, installation cost factor is 0.51, indirect cost factor applied against equipment is 0.19. Round your answer to 2 decimal places.

Answers

the estimated cost of building the current version of the processing line, considering the given factors, is $3,237,500.

To estimate the cost of building the current version of the processing line, we need to consider the construction cost factor, installation cost factor, and indirect cost factor applied against the equipment. Let's calculate the cost using the given factors:

Construction cost = Construction cost factor * Delivered equipment cost

                = 0.15 * $1.75 million

                = $262,500

Installation cost = Installation cost factor * Delivered equipment cost

                = 0.51 * $1.75 million

                = $892,500

Indirect cost = Indirect cost factor * Delivered equipment cost

             = 0.19 * $1.75 million

             = $332,500

Total cost = Delivered equipment cost + Construction cost + Installation cost + Indirect cost

          = $1.75 million + $262,500 + $892,500 + $332,500

          = $3,237,500

To know more about factors visit:

brainly.com/question/14549998

#SPJ11

Find the volume of each composite space figure to the nearest whole number.

Answers

The volume of the composite figure is 3446 cubic inches

How to determine the volume of the composite figure?

From the question, we have the following parameters that can be used in our computation:

The composite figure

The volume of the composite figure is the product of the base area and the height

i.e.

Volume = Base area * Height

Where, we have

Base area = 12 * 24 + 1/2 * 22/7 * (12/2) * (12/2)

Base area = 344.57

So. we have

Volume = 344.57 * 10

Evaluate

Volume = 3445.7

Approximate

Volume = 3446

Hence, the volume of the figure is 3446 cubic inches

Read more about volume at

brainly.com/question/30849227

#SPJ1

7.In 1870, a survey line was found to have a magnetic bearing of S7°W. The true bearing of the line is S4°E. If the magnetic declination today is 7°W, what is the magnetic bearing of the line today

Answers

Therefore, the magnetic bearing of the line today = 11 - 7 = 4°E i.e., S11°E.

The magnetic bearing of the line today is S11°E. When we talk about magnetic bearing, it is the angle between the magnetic north and the line of direction measured in the horizontal plane. While, the true bearing is the angle between the true north and the line of direction measured in the horizontal plane.

Magnetic bearing can be calculated by adding or subtracting the magnetic declination (variation). Here, the magnetic declination is 7°W (which means that the magnetic north is 7 degrees west of the true north) which was found in the year 1870. Since then, the magnetic declination has changed.

This change is called secular variation.

Hence, the magnetic bearing of the line today can be calculated as follows: Since the magnetic bearing is S7°W and the true bearing is S4°E, then the angular difference between the two bearings

= 7 + 4 = 11 degrees i.e.,

11 degrees between the true north and magnetic north.

As magnetic north is 7 degrees west of the true north, we need to subtract 7 degrees from the angle of 11 degrees to get the angle between the line and magnetic north which will give us the magnetic bearing of the line today.

Know more about the magnetic bearing

https://brainly.com/question/33332828

#SPJ11

Suppose $4000 can be invested for 4 years and 8 months at
3.83% compounded annually. Then assume the same amount
could also be invested for the same term at 3.79% compounded
daily. Which investment would earn more interest? What is the
difference in the amount of interest?

Answers

Suppose 4000 is invested for 4 years and 8 months at 3.83% compounded annually. Then the compound interest is:

[tex]$4000(1+0.0383)^(4+8/12)= $4,903.26.[/tex]

Now suppose the same amount could be invested for the same term at 3.79% compounded daily. Then assume the same amount could also be invested for the same term at 3.79% compounded.

daily. Which investment would earn more interest.

[tex]$4000(1+0.0379/365)^(365*4+8)= $4,904.45.[/tex]The difference in the amount of interest would be:

[tex]$4,904.45 - $4,903.26 = $1.19.[/tex]

Hence, the difference in the amount of interest is

1.19.

To know more about amount visit:

https://brainly.com/question/32453941

#SPJ11

Look over Chuck's work What is incorrect about the way Chuck interpreted his problem? What should have been a clue to Chuck that something was wrong?

Answers

The probability that a random student will be taking both Algebra 2 and Chemistry is 0.0136 or 1.36%.

To find the probability that a random student will be taking both Algebra 2 and Chemistry, we need to use the concept of conditional probability.

Let's denote the event of taking Algebra 2 as A and the event of taking Chemistry as C. We are given that P(A) = 0.08 (8% probability of taking Algebra 2) and P(C|A) = 0.17 (17% probability of taking Chemistry given that the student is taking Algebra 2).

The probability of taking both Algebra 2 and Chemistry can be calculated using the formula for conditional probability:

P(A and C) = P(C|A) * P(A)

Substituting the given values:

P(A and C) = 0.17 * 0.08

P(A and C) = 0.0136

Therefore, the probability that a random student will be taking both Algebra 2 and Chemistry is 0.0136 or 1.36%.

It is important to note that the probability of taking both Algebra 2 and Chemistry is determined by the intersection of the two events, which means students who are taking both courses. In this case, the probability is relatively low, as it depends on the individual probabilities of each course and the conditional probability given that a student is taking Algebra 2.

For more such questions on probability visit:

https://brainly.com/question/25839839

#SPJ8

A short structural member of length 1, area a and modulus of elasticity e, subjected to a compression load of p. The member will: Elongated by pl/ae None of the above Shorten by pl/ae Buckle at n2 Ei/ll B

Answers

The short structural member, with a length of 1, an area of a, and a modulus of elasticity of e, is subjected to a compression load of p. In this scenario, the member will actually shorten by pl/ae.

To understand why the member shortens, we need to consider the properties of a structural member and the concept of elasticity. A structural member is a component that is designed to support loads and maintain the stability of a structure. In this case, the member is under compression, meaning it is being pushed inward.

The modulus of elasticity, denoted by e, is a measure of how much a material can deform when subjected to an external force. It represents the stiffness or rigidity of the material. When a material is compressed, the applied force causes the atoms or molecules within the material to move closer together, resulting in a decrease in length.

In this case, the member will shorten by an amount equal to pl/ae. Let's break down this formula:

- p represents the compression load applied to the member.
- l is the length of the member.
- a is the area of the member.
- e is the modulus of elasticity.

By multiplying the compression load (p) by the length (l) and dividing it by the product of the area (a) and modulus of elasticity (e), we can determine the amount by which the member shortens.

Therefore, the correct answer is "Shorten by pl/ae."

Learn more about elasticity:

https://brainly.com/question/30610639

#SPJ11

Calculate the standard cell potential for a battery based on the following reactions: Sn2+ + 2e → Sn(s) E° = -0.14 V Au3+ + 3e- Au(s) E° = +1.50 V b) What is the potential if the [Au3+] = 4.37x10-3 M and [Sn2+] = 1.65 M?

Answers

The potential for the given concentrations of [Au3+] = 4.37x10^-3 M and [Sn2+] = 1.65 M is approximately 1.7368 V.

To calculate the standard cell potential for a battery based on the given reactions, we need to use the Nernst equation. The Nernst equation relates the cell potential to the concentrations of the reactants involved in the cell reaction. The Nernst equation is given by:

E = E° - (RT/nF) * ln(Q)

Where:
E = cell potential
E° = standard cell potential
R = gas constant (8.314 J/(mol·K))
T = temperature in Kelvin
n = number of electrons transferred in the cell reaction
F = Faraday's constant (96,485 C/mol)
ln = natural logarithm
Q = reaction quotient

First, let's calculate the standard cell potential (E°) for the given reactions:

For the reaction: Sn2+ + 2e- → Sn(s)
The standard cell potential (E°) is given as -0.14 V.

For the reaction: Au3+ + 3e- → Au(s)
The standard cell potential (E°) is given as +1.50 V.

Now, we can calculate the potential (E) for the given concentrations:

[Au3+] = 4.37x10^-3 M
[Sn2+] = 1.65 M

We can find the reaction quotient (Q) by taking the concentration of the product raised to the power of its coefficient divided by the concentration of the reactant raised to the power of its coefficient. Since the coefficients for both reactions are 1, the reaction quotient (Q) is simply the ratio of the product concentration to the reactant concentration.

Q = [Au3+]/[Sn2+]
  = (4.37x10^-3 M)/(1.65 M)
  = 2.6515x10^-3

Now, we can substitute the values into the Nernst equation:

E = E° - (RT/nF) * ln(Q)

Since both reactions involve the transfer of electrons, the value of n is 2.

Let's assume a temperature of 298 K:

E = (1.50 V) - ((8.314 J/(mol·K))*(298 K)/(2*(96,485 C/mol)) * ln(2.6515x10^-3)

Simplifying the calculation, we get:

E ≈ 1.50 V - 0.0400 V * ln(2.6515x10^-3)
E ≈ 1.50 V - 0.0400 V * (-5.92)
E ≈ 1.50 V + 0.2368 V
E ≈ 1.7368 V

Therefore, the potential for the given concentrations of [Au3+] = 4.37x10^-3 M and [Sn2+] = 1.65 M is approximately 1.7368 V.

Know more about potential:

https://brainly.com/question/28300184

#SPJ11

Please help!!! Correct answer gets brainliest

Answers

Answer:

B. It is a line segment

C. It is a two-dimensional object

Step-by-step explanation:

A line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints.

A triangle is a two-dimensional shape, in Euclidean geometry, which is seen as three non-collinear points in a unique plane.

Fill in the blank.
The only solution of the initial-value problem y" + x^2y= 0, y(0) = 0, y'(0) = 0 is________

Answers

The only solution of the initial-value problem (y'' + x^2y = 0), (y(0) = 0), (y'(0) = 0) is the zero function, (y(x) = 0).

Collecting like terms and equating coefficients of like powers of (x) to zero, we find that all the coefficients except (a_0) and (a_1) must be zero.

To solve the initial-value problem (y'' + x^2y = 0), (y(0) = 0), (y'(0) = 0), we assume a power series solution of the form (y(x) = \sum_{n=0}^{\infty} a_nx^n).

Differentiating this series twice, we get (y''(x) = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n).

Substituting these expressions into the differential equation, we have:

[\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + x^2\sum_{n=0}^{\infty} a_nx^n = 0.]

Collecting like terms and equating coefficients of like powers of (x) to zero, we find that all the coefficients except (a_0) and (a_1) must be zero. Since (y(0) = 0) and (y'(0) = 0), we have (a_0 = 0) and (a_1 = 0).

Therefore, the only solution to the initial-value problem (y'' + x^2y = 0), (y(0) = 0), (y'(0) = 0) is the zero function, (y(x) = 0).

Learn more about initial-value problem:

https://brainly.com/question/30883066

#SPJ11

At Statsville High School, 125 students are taking university-preparation Science courses. Of these students, 64 take Biology, 40 take Chemistry, and 51 take Physics. There are 12 students who take both Chemistry and Physics, 11 who take both Chemistry and Biology, and 8 who take all three courses. How many students take just Physics and Biology? Illustrate your answer with a Venn diagram.

Answers

Using Venn diagram 7 students take just Physics and Biology.


To determine the number of students who take just Physics and Biology, we need to analyze the given information and use a Venn diagram.

Given that,

total students =125

Universal set U=125

Biology n(B) = 64,

Chemistry n (C) = 40

Physics n(P) = 51

n(C ∩ P) = 12, n (C∩B)= ||

n(B∩C∩P) = 8

n (BUCUP) = U = 125

by formula -

n(BUCUP) = n(B) + n (C) +n(P) - n (B∩C)-n(C∩P)-n(B∩P)+n (B∩C ∩P)

125= 64 +40 +51 - 11-12-n (B∩P)+8

n(B∩P) = 15

n (just physics and Biology) = 15-8 = 7

Therefore, 7 students take just Physics and Biology.

Learn more about Venn diagram :

https://brainly.com/question/28060706

#SPJ11

I need a step by step explanation please Thank you so much

Answers

a. To find where tan 0 = tan 265° and 0 is not equal to 265°, we can use the following formula:

tan(theta) = sin(theta) / cos(theta)

So we have:

tan(0) = tan(265°)

sin(0) / cos(0) = sin(265°) / cos(265°)

Since 0 is not equal to 265°, we know that cos(0) is not equal to cos(265°). Therefore, we can simplify the equation as follows:

sin(0) * cos(265°) = sin(265°) * cos(0)

Using the identity sin(a - b) = sin(a)cos(b) - cos(a)sin(b), we can rewrite this equation as:

sin(0 - 265°) = sin(-265°) = -sin(265°)

Since sin(-x) = -sin(x), we have:

sin(0 + 265°) = sin(265°)

Using the identity sin(a + b) = sin(a)cos(b) + cos(a)sin(b), we can rewrite this equation as:

sin(0)cos(265°) + cos(0)sin(265°) = sin(265°)

Since tan(theta) = sin(theta)/cos(theta), we can divide both sides of the equation by cos(0):

tan(0) + tan(265°) = 1

tan(0) + (-1.1918...) = 1

tan(0) ≈ **2.1918...**

Therefore, the solution is **tan 0 ≈ 2.1918...**.

b. If sin 0 = 2/3 and cos 0 > 0, then we can use the following formula to find cotangent:

cot(theta) = cos(theta)/sin(theta)

We are given that sin 0 = 2/3 and cos 0 > 0, so we know that:

cos^2(theta) + sin^2(theta) = 1

cos^2(theta) + (2/3)^2 = 1

cos^2(theta) = 1 - (2/3)^2

cos^2(theta) = 5/9

Since cos 0 > 0, we know that cos theta is positive. Therefore:

cos(theta) = sqrt(5/9)

= (sqrt(5))/3

Now we can use the formula for cotangent:

cot(0) = cos(0)/sin(0)

= [(sqrt(5))/3] / (2/3)

= sqrt(5)/2

Therefore, the solution is **cot 0 = sqrt(5)/2**.

c. If 5/2 cos 0 +4 =2, we can solve for cos 0 as follows:

5/2 cos 0 +4 =2

5/2 cos 0 = -2

cos 0 = -4/5

Now we can use the inverse cosine function to find the angle:

cos^-1(-4/5)

≈ **131.8°**

Therefore, the solution is **0 ≈ 131.8°**.

I hope this helps! Let me know if you have any other questions.
Answers:(a)  85(b)  [tex]\boldsymbol{\frac{\sqrt{5}}{2}}[/tex](c)  Approximately 143.1301 and 216.8699

======================================================

Work shown for part (a)

tan(x) = tan(x-180)

tan(265) = tan(265-180)

tan(265) = tan(85)

-------------------------

Work shown for part (b)

sine = opposite/hypotenuse = 2/3

opposite = 2 and hypotenuse = 3

Use a = 2 and c = 3 to determine b in the pythagorean theorem.

[tex]a^2+b^2 = c^2\\\\2^2+b^2 = 3^2\\\\4+b^2 = 9\\\\b^2 = 9-4\\\\b^2 = 5\\\\b = \sqrt{5}\\\\[/tex]

adjacent = [tex]\sqrt{5}[/tex] and opposite = 2

[tex]\cot(\theta) = \frac{\text{adjacent}}{\text{opposite}}\\\\\cot(\theta) = \frac{\sqrt{5}}{2}\\\\[/tex]

-------------------------

Work shown for part (c)

[tex]\frac{5}{2}\cos(\theta)+4 = 2\\\\\frac{5}{2}\cos(\theta) = 2-4\\\\\frac{5}{2}\cos(\theta) = -2\\\\\cos(\theta) = -2*(\frac{2}{5})\\\\\cos(\theta) = -\frac{4}{5}\\\\[/tex]

[tex]\theta = \pm\arccos\left(-\frac{4}{5}\right)+360n \ \ \text{ .... where n is an integer} \\\\\theta = \pm143.1301+360n\\\\\theta = 143.1301+360n \ \text{ or } \ \theta = -143.1301+360n\\\\[/tex]

Here's a table of values for selected inputs of n

[tex]\begin{array}{|c|c|c|} \cline{1-3}n & 143.1301+360n & -143.1301+360n\\\cline{1-3}-1 & -216.8699 & -503.1301\\\cline{1-3}0 & 143.1301 & -143.1301\\\cline{1-3}1 & 503.1301 & 216.8699\\\cline{1-3}2 & 863.1301 & 576.8699\\\cline{1-3}\end{array}[/tex]

The results 143.1301 and 216.8699 are in the interval [tex]0^{\circ} < \theta < 360^{\circ}[/tex], which makes them the two approximate solutions.

You can use graphing software such as GeoGebra or Desmos to confirm the answers.

Please help with this problem!!

Answers

Let‘s start with the first part: What do these words mean for a function:
INCREASING: A function or its graph is increasing if it is „going up“, increasing in its y value while the x value increases.
DECREASING: A function or its graph is decreasing if it is „going down“, decreasing in its y value while the x value increases.
CONSTANT: A function is constant when it is horizontal, meaning it stays at the same y value while the x value increases.

Do you think you can work out the rest of the problem by yourself? Else let me know :)
Other Questions
Describe three host-country benefits and three host-country costs offoreign direct investment (FDI). Support your answer with real-life examples.Question 2. If current trends continue, China may be the worlds largest economy by2030. Discuss the possible implications of such a development for (a) world trade,(b) the business strategy of European and American corporations. Is this a threat, orare there ways in which this trend might benefit the global economy? In what ways? The following electrical loads are connected to a 380 V3-phase MCCB board: Water pump: 3-phase, 380 V,50 Hz,28 kW, power factor of 0.83 and efficiency of 0.9 - ambient temperature of 35 C - separate cpc - 50 m length PVC single core copper cable running in trunking with 2 other circuits - 1.5% max. allowable voltage drop - short circuit impedance of 23 m at the MCCB during 3-phase symmetrical fault Air-conditioner: - 4 numbers 3-phase, 380 V,50 Hz,15 kW, power factor of 0.88 and efficiency of 0.9 connected from a MCB board - ambient temperature of 35 C - separate cpc - 80 m length PVC single core sub-main copper cable running in trunking with 2 other circuits - 1.5\% max. allowable voltage drop - short circuit impedance of 14 m at the MCCB during 3-phase symmetrical fault Lighting and small power: - Total 13k W loading include lighting and small power connected from a 3-phase MCB board with total power factor of 0.86 - ambient temperature of 35 C - separate cpe - 80 m length PVC single core sub-main copper cable running in trunking with 2 other circuits - 1.5\% max. allowable voltage drop - short circuit impedance of 40 m at the MCCB during 3-phase symmetrical fault The radius of the Earth RE=6.37810m and the acceleration due to gravity at its surface is 9.81 m/s. a) Calculate the altitude above the surface of Earth, in meters, at which the acceleration due to gravity is g=2.6 m/s. Consider the equation x cos x - 2x + 3x - 1 = 0. Find an approximation of it's root in [1, 2] to an absolute error less than 10^-9 with one of the methods covered in class. Journalize the entries for October 31 and November 19. If an amount box does not require an entry, leave it blank. b. What is the total amount invested (total paid-in capital) by all stockholders as of November 19 ? Identify and describe the four (4) Project supply chainmanagement components. 9. What is meant by a company's book value? What is meant by market value? Explain why these values often differ for a particular company. Question 4An art professor takes slide photographs of a number of paintings reproduced in a book and used them in her class lectures. Is this considered as copyright law violation? Explain.Question 9In your opinion, why plagiarism is considered as unethical action? Give convincing answer and justify it using one of the ethical theoriesQuestion 11You are managing a department and one of the employees Ahmed, for some emergency reasons, will be away for some days. One employee Faisal has been assigned a task to finish Ahmed work. Faisal requested from you to have all Ahmed files to be copied to his computer. What will be your decision? Justify your answer,Question 12How do we differentiate between hacktivists and cyberterrorists? (a) A current distribution gives rise to the vector magnetic potential of A = 2xya, - 6xyza, + 2xya, Wb/m Determine the magnetic flux Y through the loop described by y=1m, 0mx5m, and 0m z 2m. [5 Marks] (c) A 10 nC of charge entering a region with velocity of u=10xa, m/s. In this region, there exist static electric field intensity of E= 100 a, V/m and magnetic flux density of B=5.0a, Wb/m. Determine the location of the charge in x-axis such that the net force acting on the charge is zero. [5 Marks] Explain the principle of ultrasonic imaging system.(Sub: Biomedical Instrumentation). Please answer the following questions thank youDetermine the radius of a vanadium (V) atom, given that V has a BCC crystal structure, density of 5.96 g/cm, and atomic weight of 50.9 g/mol. 1.Write a Java Program to check the size using the switch...case statement ? Small, Medium, Large, Extra Large, Unknown . NUMBER: 27, 32, 40 54 Output your size is (size) F 4. Write a Java Program to check the mobile type of the user? iPhone, Samsung, Motorola. Type the following commands to access the data and to create the data frame ceoDF by choosing only some of the columns in this data. library(UsingR) (install the package if necessary) headlceo2013) ceoDF We can also look at specific actions: when might lying be okay?When might it be wrong? Does traditionalism bring complications that are then affectedby emotions and ego? How Applying Kirchoff's laws to an electric circuit results, we obtain: (9+ j12) I (6+ j8) I = 5 (6+j8)I +(8+j3) I = (2+ j4) Find 1 and 1 Solve the following initial value problem in terms of g(t) : y3y+2y=g(t):y(0)=2,y(0)=6 Explain any one type of DC motor with neat diagram Which of the following is not a good strategy for adapting to a favorable audience? Select an answer and submit. For keyboard navigation, use the up/down arrow keys to select an answer. a maintain you An industrial plant is responsible for regulating the temperature of the storage tank for the pharmaceutical products it produces (drugs). There is a PID controller (tuned to the Ziegler Nichols method) inside the tank where the drugs are stored at a temperature of 8 C (temperature that drugs require for proper refrigeration). 1. Identify and explain what function each of the controller components must fulfill within the process (proportional action, integral action and derivative action). 2. Describe what are the parameters that must be considered within the system to determine the times Ti and Td?