1. In which number does the 6 have a value that is one-tenth the value of the 6 In 34,7612
A 16,305
B. 28,695
C. 51,364
D. 78,426

Answers

Answer 1

Answer:

ok

Step-by-step explanation:


Related Questions

How many roots does the equation 3x² = 1 - 7x have and what is the nature of the roots

Answers

Answer:

Step-by-step explanation:

Rewrite this quadratic in standard form:  3x^2 + 7x - 1.

The coefficients of x are {3, 7, -1}, and so the discriminant is b^2 - 4ac, or

7^2 - 4(3)(-1), or 49 + 12, or 61.  Because the discriminant is positive, this quadratic has two real, unequal roots

Complete the following steps to plot an image of your own choosing (a) Create a list containing a set of ordered pairs needed to create your image. Name the list mylist. Be sure to list the points in the order in which they will be connected together. The created list should begin and end with (0,0) in order to connect the last point back to the first point. (b) Use the command HGMatrix to convert your matrix into a matrix and assign this matrix the name mylistmat and then use the Plotimage command to plot the corresponding image.

Answers

To plot an image of your own choosing, you can follow these steps. First, create a list containing a set of ordered pairs that represent the points needed to create your image.

To create the image, you need to define the set of ordered pairs that form the outline of the desired shape. The points in the list should be ordered in a way that connects them together to form the shape. Including (0,0) at the beginning and end ensures that the last point connects back to the first point.

Once you have the list of ordered pairs, you can convert it into a matrix using the "HGMatrix" command. This step is necessary for plotting the image using the "Plotimage" command. The matrix, named "mylistmat," will represent the points in a format suitable for plotting.

Finally, using the "Plotimage" command, you can plot the image based on the points in "mylistmat." The command will take the ordered pairs and connect them together to create the desired image.

By following these steps, you can plot your own image using the specified list, matrix conversion, and image plotting commands.

Learn more about matrix here:

https://brainly.com/question/29132693

#SPJ11

Knowledge and Understanding 14. Simplify (1112 - 6vw - 3wa)-(-702 + vw + 13w). 15. Which of the following is equivalent to the expression (5a + 26 - 4c)? a. 25a2 + 20ab - 40ac +482 - 16bc + 1602 b. 25a2 + 10ab - 20ac + 482 - 86C + 16c2 + c. 25a2 + 482 + 1602 d. 10a + 4b-8c 16. Expand and simplify. (b + b)(4 - 5)(25 - 8) 17. Simplify. P-2 3p + 3 X 9p +9 P + 2 3r2 - 18. Simplify. 63 62 po* + 5m3 - 15r + 12 2m2 + 2r - 40 19. Simplify. xi21 4 X + 2 3 x-1

Answers

14. (1112 - 6vw - 3wa)-(-702 + vw + 13w) = 1814 - 7vw - 3wa - 13w

15. The equivalent of the expression (5a + 26 - 4c) is 25a2 + 10ab - 20ac + 482 - 86c + 1602 + c.

16.  (b + b)(4 - 5)(25 - 8) = -34

14. Simplify (1112 - 6vw - 3wa)-(-702 + vw + 13w).

Given expression is (1112 - 6vw - 3wa)-(-702 + vw + 13w)

⇒ 1112 - 6vw - 3wa + 702 - vw - 13w

⇒ 1814 - 7vw - 3wa - 13w

15. We are to find the equivalent of the expression (5a + 26 - 4c).

a. 25a2 + 20ab - 40ac +482 - 16bc + 1602

b. 25a2 + 10ab - 20ac + 482 - 86C + 1602

c. 25a2 + 482 + 1602

d. 10a + 4b-8c5a + 26 - 4c

= 5a - 4c + 26 = 25a2 - 20ac +482 - 4c2 + 52 - 8ac

= 25a2 - 20ac + 482 - 4c2 + 10a - 8c = Option (b)

⇒ 25a2 + 10ab - 20ac + 482 - 86c + 16c2 + c.

16. Expand and simplify. (b + b)(4 - 5)(25 - 8)

Given expression is (b + b)(4 - 5)(25 - 8) = 2b(-1)(17) = -34

To learn more about simplification

https://brainly.com/question/28008382

#SPJ11

Consider the following second order linear ODE y" - 5y + 6y = 0, where y' and y" are first and second order derivatives with respect to x. (a) Write this as a system of two first order ODEs and then write this system in matrix form. (b) Find the eigenvalues and eigenvectors of the system. (e) Write down the general solution to the second order ODE. (a) Using your result from part 3 (or otherwise) find the solution to the following equation. y' - 5y + y = 32

Answers

a. System in the matrix form is x' = Ax where A = [tex]\left[\begin{array}{ccc}0&1\\-5&6\end{array}\right][/tex] and x = [y, u].

b. The eigenvalues of the system are λ₁ = 5 and λ₂ = 1 and eigenvector are v₁ and v₂ = v₁, and v₁ is any non-zero value.

c. The general solution is equal to y(x) = c₁ × [tex]e^{(5x)[/tex] × [v₁] + c₂× [tex]e^{(x)[/tex]× [v₂].

a. Solution to the equation. y' - 5y + y = 32 is y(x) = c₁ × [tex]e^{(5x)[/tex] + c₂ × [tex]e^{(x)[/tex].

(a) To write the second order linear ODE as a system of two first order ODEs,

Introduce a new variable u = y'.

Then, we have,

u' = y'' - 5y + 6y

   = -5y + 6u

Now, write this as a system of two first order ODEs,

y' = u

u' = -5y + 6u

To express this system in matrix form,

Define the vector x = [y, u] and the matrix A = [tex]\left[\begin{array}{ccc}0&1\\-5&6\end{array}\right][/tex]

The system can then be written as,

x' = Ax

(b) To find the eigenvalues and eigenvectors of matrix A, solve the characteristic equation,

|A - λI| = 0

where I is the identity matrix.

Substituting the values of A, we have,

[tex]|\left[\begin{array}{ccc}0&1\\-5&6\end{array}\right][/tex] [tex]-\lambda\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]|[/tex] = 0

[tex]\left[\begin{array}{ccc}-\lambda&1\\-5&6-\lambda\end{array}\right][/tex] = 0

(-λ)(6-λ) - (-5)(1) = 0

λ²- 6λ + 5 = 0

Factoring the quadratic equation, we get,

(λ - 5)(λ - 1) = 0

So the eigenvalues are λ₁ = 5 and λ₂ = 1.

To find the corresponding eigenvectors,

solve the equation (A - λI)v = 0 for each eigenvalue.

Let us start with λ = 5

(A - 5I)v = 0

[tex]|\left[\begin{array}{ccc}1&1\\-5&6\end{array}\right]|[/tex] v = 0

v₁ + v₂ = 0

-5v₁ + v₂ = 0

From the first equation, we get v₂ = -v₁.

Substituting this into the second equation, we have -5v₁ - v₁ = 0,

which simplifies to -6v₁ = 0.

This implies v₁ = 0, and consequently, v₂ = 0.

So, for λ = 5, the eigenvector is v₁ = 0 and v₂ = 0.

Now, let us find the eigenvector for λ = 1.

(A - I)v = 0

[tex]|\left[\begin{array}{ccc}-1&1\\-5&5\end{array}\right][/tex] v = 0

-v₁ + v₂ = 0

-5v₁ + 5v₂ = 0

From the first equation, we get v₂ = v₁.

Substituting this into the second equation, we have -5v₁ + 5v₁ = 0,

which simplifies to 0 = 0.

This implies that v₁ can be any non-zero value.

So, for λ = 1, the eigenvector is v₁ and v₂ = v₁, where v₁ is any non-zero value.

(e) The general solution to the second order ODE can be expressed using the eigenvalues and eigenvectors as follows,

y(x) = c₁ ×[tex]e^{(\lambda_{1} x)[/tex] × v₁ + c₂ × [tex]e^{(\lambda_{2} x)[/tex]× v₂

Plugging in the values we found earlier, the general solution becomes,

y(x) = c₁ × [tex]e^{(5x)[/tex] × [v₁] + c₂× [tex]e^{(x)[/tex]× [v₂]

where [v₁] and [v₂] are the eigenvectors corresponding to the eigenvalues λ₁ = 5 and λ₂ = 1 respectively.

(a) To find the solution to the equation y' - 5y + y = 32,

Use the general solution obtained above.

Comparing the equation with the standard form y' - 5y + 6y = 0,

The equation corresponds to the case where λ₂ = 1.

Substitute λ = 1, v₁ = 1, and v₂ = 1 into the general solution.

y(x) = c₁ × [tex]e^{(5x)[/tex] × [1] + c₂ × [tex]e^{(x)[/tex] × [1]

Simplifying this expression, we have,

y(x) = c₁ × [tex]e^{(5x)[/tex] + c₂ × [tex]e^{(x)[/tex]

Learn more about matrix here

brainly.com/question/31976942

#SPJ4

do not send links or files!! i really need help lol

Answers

Answer:

x²+11x+30

Step-by-step explanation:

for this question, all we need to do is multiply (x+5) by (x+6)

we can use the distributive property.

(x+5)(x+6)

x² + 5x + 6x + 30

x² + 11x + 30

complete the table... plz help ​

Answers

Answer:

3=20

4=15

5=12

Step-by-step explanation:

CAN SOMEONE HELP PLS :D will mark brainliest ;)

Answers

Answer: the second one/ \/36/6

Step-by-step explanation:

answer the question true or false. the null distribution is the distribution of the test statistic assuming the null hypothesis is true; it is mound shaped and symmetric about the null mean .

Answers

False, the null distribution is the distribution of the test statistic assuming the null hypothesis is true; it is mound-shaped and symmetric about the null mean.

The null distribution is the distribution of the test statistic under the assumption that the null hypothesis is true. However, its shape and symmetry are not necessarily predetermined.

The null distribution can take various forms depending on the specific test and the underlying data. It may or may not be mound shaped or symmetric about the null mean. The shape and characteristics of the null distribution are determined by the specific hypothesis being tested, the sample size, and other factors.

Learn more about null distribution at

https://brainly.com/question/31692159

#SPJ4

What is the value of the expression below when x=10x=10?
6x-5
6x−5

Answers

Answer:

55

Step-by-step explanation:

To find this, simply plug 10 in for x.

6(10)-5

6*10=60

60-5=55

for what positive values of k does the function y=sin(kt) satisfy the differential equation y′′ 64y=0?

Answers

The function y = sin(kt) satisfies the differential equation y'' - 64y = 0 for pospositiveypospositiveyitiveitive values of k that are multiples of 8.

To determine the values of k for which the function y = sin(kt) satisfies the given differential equation, we need to substitute y into the equation and solve for k. Let's start by finding the first and second derivatives of y with respect to t.
The first derivative of y with respect to t is y' = kcos(kt), and the second derivative is y'' = -k^2sin(kt). Substituting these derivatives into the differential equation gives us:
(-k^2sin(kt)) - 64sin(kt) = 0Simplifying the equation, we get:
sin(kt) = -64*sin(kt)/k^2
We can divide both sides of the equation by sin(kt) (assuming sin(kt) is not zero) to get:
1 = -64/k^2
Solving for k^2, we find k^2 = -64. Since k must be positive, there are no positive values of k that satisfy this equation. Therefore, there are no positive values of k for which the function y = sin(kt) satisfies the given differential equation y'' - 64y = 0.

learn more about differential equation here

https://brainly.com/question/32538700



#SPJ11

Three companies, A, B and C, make computer hard drives. The proportion of hard drives that fail within one year is 0.001 for company 0.002 for company B and 0.005 for company C. A computer manufacturer gets 50% of their hard drives from company A, 30% from company B and 20% from company C. The computer manufacturer installs one hard drive into each computer.
(a) What is the probability that a randomly chosen computer purchased from this manufacturer will experience a hard drive failure within one year? [4 marks]
(b) I buy a computer that does experience a hard drive failure within one year. What is the probability that the hard drive was manufactured by company C? [4 marks]
(c) The computer manufacturer sends me a replacement computer, whose hard drive also fails within one year. What is the probability that the hard drives in the original and replacement computers were manufactured by the same company? [You may assume that the computers are produced independently.] [6 marks]
(d) A colleague of mine buys a computer that does not experience a hard drive failure within one year. Calculate the probability that this hard drive was manufactured by company C. [6 marks]

Answers

(a) The probability of a computer failure from Company A is 0.001; from Company B is 0.002; and from Company C is 0.005.

Therefore, the probability that a computer will experience a hard drive failure within one year is:(0.50 x 0.001) + (0.30 x 0.002) + (0.20 x 0.005)= 0.0012. The probability of a randomly selected computer experiencing a hard drive failure within one year is 0.0012 or 0.12%.
(b) Bayes' theorem will be used to calculate this probability:Let A be the event that the computer's hard drive was manufactured by Company C. Let B be the event that the computer experienced a hard drive failure. P(A|B) is the probability that the hard drive was manufactured by Company C given that a hard drive failure was experienced.

P(A|B) = P(B|A) P(A) / P(B) Where: P(B|A) = 0.005 (the probability of failure if the hard drive was manufactured by Company C)P(A) = 0.20 (the proportion of hard drives that the computer manufacturer gets from Company C)P(B) = (0.50 x 0.001) + (0.30 x 0.002) + (0.20 x 0.005) = 0.0012 (as in part a)

Therefore: P(A|B) = (0.005 x 0.20) / 0.0012 = 0.0833 or 8.33%.
(c)Let A be the event that both hard drives were manufactured by Company A; B be the event that both hard drives were manufactured by Company B; and C be the event that both hard drives were manufactured by Company C. Then we need to find the probability of event A or B or C, given that a hard drive failure was experienced:P(A U B U C|F) = P(F|A U B U C) P(A U B U C) / P(F)where F is the event that the hard drive in the replacement computer fails.P(F|A U B U C) = P(F) = (0.50 x 0.001) + (0.30 x 0.002) + (0.20 x 0.005) = 0.0012P(A U B U C) = (0.50)^2 + (0.30)^2 + (0.20)^2 = 0.46P(F) = P(A U B U C) P(F|A U B U C) + P(A' n B n C) P(F|A' n B n C)= 0.46 x 0.0012 + 0.04 x 0.3 = 0.000552P(A U B U C|F) = P(F|A U B U C) P(A U B U C) / P(F)= (0.0012 x 0.46) / 0.000552 = 1.00or 100%. Therefore, the probability that the original and replacement computers were produced by the same company is 100%.
(d) Bayes' theorem will be used to calculate this probability:Let A be the event that the hard drive was manufactured by Company C. Let B be the event that the computer did not experience a hard drive failure. P(A|B) is the probability that the hard drive was manufactured by Company C given that no hard drive failure was experienced.P(A|B) = P(B|A) P(A) / P(B)Where:P(B|A) = 1 - 0.005 = 0.995 (the probability that the hard drive did not fail if it was manufactured by Company C)P(A) = 0.20 (as in part b)P(B) = 1 - (0.50 x 0.001) - (0.30 x 0.002) - (0.20 x 0.005) = 0.9988

Therefore:P(A|B) = (0.995 x 0.20) / 0.9988 = 0.1989 or 19.89%. Therefore, the probability that the hard drive was manufactured by Company C given that it did not fail is 19.89%.

#SPJ11

The probability that the hard drive was manufactured by company C given that a failure was not experienced by the computer within one year is approximately 0.256.

(a)Probability that a randomly chosen computer purchased from this manufacturer will experience a hard drive failure within one year = 0.5 x 0.001 + 0.3 x 0.002 + 0.2 x 0.005 = 0.0016

(b)Let's denote the event that a computer failure is experienced within one year by F and the event that the hard drive is made by company C by C.

Then we are required to calculate P(C | F), which is the probability that the hard drive was manufactured by company C given that a failure was experienced by the computer within one year. This can be found by using the Bayes' rule as follows:

[tex]$$P(C|F) = \frac{P(F|C)P(C)}{P(F|A)P(A) + P(F|B)P(B) + P(F|C)P(C)}$$[/tex]
where P(C) = 0.2, P(A) = 0.5 and P(B) = 0.3.$$P(F|A) = 0.001, P(F|B) = 0.002, P(F|C) = 0.005$$

Thus, we have:[tex]$$P(C|F) = \frac{0.005 \times 0.2}{0.001 \times 0.5 + 0.002 \times 0.3 + 0.005 \times 0.2} \approx 0.476$$[/tex]

Therefore, the probability that the hard drive was manufactured by company C given that a failure was experienced by the computer within one year is approximately 0.476.

(c)Let's denote the event that the original hard drive is manufactured by company A, B and C by A, B, and C respectively.

Similarly, let's denote the event that the replacement hard drive is manufactured by company A, B, and C by A', B', and C' respectively.

We are required to calculate P(A = A', B = B', C = C' | F), which is the probability that the hard drives in the original and replacement computers were manufactured by the same company given that a failure was experienced by both computers within one year.

This can be found by using the Bayes' rule as follows:

[tex]$$P(A = A', B = B', C = C'|F) = \frac{P(F|A = A', B = B', C = C')P(A = A')P(B = B')P(C = C')}{P(F)}$$[/tex]

where: [tex]$$P(F) = P(F|A = A', B = B', C = C')P(A = A')P(B = B')P(C = C') + P(F|A \ne A', B \ne B', C \ne C')P(A \ne A')P(B \ne B')P(C \ne C')$$[/tex]

Here, we are assuming that the probabilities of computer failure are independent of each other and the company that manufactured the hard drives of the two computers are independent of each other. Therefore, we have:

[tex]$$P(F|A = A', B = B', C = C') = P(F|A)P(F|B)P(F|C) = 0.001 \times 0.002 \times 0.005$$[/tex]

[tex]$$P(F|A \ne A', B \ne B', C \ne C') = 0$$[/tex]

Also, we have:$$P(A = A') = P(B = B') = P(C = C') = \frac{1}{3}$$

[tex]$$P(A \ne A', B \ne B', C \ne C') = \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \frac{8}{27}$$[/tex]

Thus, we have:$$P(A = A', B = B', C = C'|F) = \frac{0.001 \times 0.002 \times 0.005 \times (\frac{1}{3})^3}{P(F)}$$

[tex]$$P(A \ne A', B \ne B', C \ne C'|F) = \frac{P(F) - 0.001 \times 0.002 \times 0.005 \times (\frac{1}{3})^3}{\frac{8}{27}}$$[/tex]

Now, we need to find P(F). This can be done as follows:

[tex]$$P(F) = P(F|A = A', B = B', C = C')P(A = A')P(B = B')P(C = C') + P(F|A \ne A', B \ne B', C \ne C')P(A \ne A')P(B \ne B')P(C \ne C')$$$$= 0.001 \times 0.002 \times 0.005 \times (\frac{1}{3})^3 + 0 = 4.6296 \times 10^{-8}$$Thus, we have:$$P(A = A', B = B', C = C'|F) = 0.0296$$[/tex]

[tex]$$P(A \ne A', B \ne B', C \ne C'|F) = 0.9704$$[/tex]

Therefore, the probability that the hard drives in the original and replacement computers were manufactured by the same company given that a failure was experienced by both computers within one year is 0.0296.(d)Let's denote the event that the hard drive is made by company C by C and the event that a computer failure is not experienced within one year by F'. We are required to calculate P(C | F'), which is the probability that the hard drive was manufactured by company C given that a failure was not experienced by the computer within one year. This can be found by using the Bayes' rule as follows:

[tex]$$P(C|F') = \frac{P(F'|C)P(C)}{P(F'|A)P(A) + P(F'|B)P(B) + P(F'|C)P(C)}$$[/tex]

where P(C) = 0.2, P(A) = 0.5 and P(B) = 0.3.$$P(F'|A) = 0.999, P(F'|B) = 0.998, P(F'|C) = 0.995$$

Thus, we have: [tex]$$P(C|F') = \frac{0.995 \times 0.2}{0.999 \times 0.5 + 0.998 \times 0.3 + 0.995 \times 0.2} \approx 0.256$$[/tex]

Therefore, the probability that the hard drive was manufactured by company C given that a failure was not experienced by the computer within one year is approximately 0.256.

To know more about probability, visit:

https://brainly.com/question/31828911

#SPJ11

what is the domain of the function

Answers

Answer:

hi sh Sheet sh I monorailg Jericho improve Odom Ybor

The average speed of an airplane is 550 miles per hour Create an equation to represent the distance, d, in miles, that the airplane travels after t hours at the average speed.

Answers

Answer:

Step-by-step explanation:

1

Answer:

56

Step-by-step explanation:

i just is smart

yhhhhhhhhhhh

just #16 and please show your work!! i will give brainliest!!

Answers

Answer:

the bottom triangle is scaled down version of above one

then

[tex] \frac{18}{6} = \frac{x}{2} [/tex]

[tex]x = 6[/tex]

and

[tex] \frac{18}{6} = \frac{y}{5} [/tex]

[tex]y = 15[/tex]

Which 3-dimensional figure is associated with the volume formula V = 1/3 π r 2 h?

A. pyramid

B. cylinder

C. sphere

D. cone

Help ASAP!

Answers

The answer to your question is D cone

Answer

c

Step-by-step explanation:

It is not d because of the way that it is formed


[tex](2x5y6)(4x - 3y - 3) [/tex]

Answers

240x^2y-180xy^2-180xy

What is the probability of getting a number greater than or equal to 5 when rolling a number cube numbered 1 to 6?

Answers

Answer:

There is a 1/3 (or 0.33%) probability of rolling a number greater than or equal to 5.

Step-by-step explanation:

First, find what numbers are greater than or equal to 5:

5 and 6

Find what options you can get on a number cube:

1, 2, 3, 4, 5, and 6

Out of the 6 possible outcomes, there are only 2 that will get a number greater than or equal to 5. Write this as a fraction:

2/6

Simplify:

1/3

PARK is a parallelogram. Find the value of x.

Answers

Answer: 40

Step-by-step explanation:

Please please help this is overdue

Answers

Answer

only the graph is a function. I can tell by doing the vertical line test on the graph and making sure that each x value only happens once. On the table it is not a function since the x values repeat.

: Let S = {1,2,3,...,18,19). Let R be the relation on S defined by xRy means "xy is a square of an integer". For example 1R4 since (1)(4) = 4 = 22. a. Show that R is an equivalence relation (i.e. reflexive, symmetric, and transitive). b. Find the equivalence class of 1, denoted 7. c. List all equivalence classes with more than one element.

Answers

a. The relation R defined on the set S = {1, 2, 3, ..., 18, 19} is an equivalence relation. It is reflexive, symmetric, and transitive, b. The equivalence class of 1, denoted [1], consists of the perfect squares in S: {1, 4, 9, 16}, c. The equivalence classes with more than one element are [1], [2], [3], ..., [18], and [19]. Each equivalence class represents a set of numbers that are squares of integers.

a. To show that the relation R is an equivalence relation, we need to demonstrate that it is reflexive, symmetric, and transitive.

i. Reflexive: For R to be reflexive, every element in S must be related to itself. Since the square of any integer is still an integer, xRx holds for all x in S, satisfying reflexivity.

ii. Symmetric: For R to be symmetric, if xRy holds, then yRx must also hold. Since multiplication is commutative, if xy is a square of an integer, then yx is also a square of an integer. Hence, R is symmetric.

iii. Transitive: For R to be transitive, if xRy and yRz hold, then xRz must also hold. Since the product of two squares of integers is itself a square of an integer, xz is also a square of an integer. Thus, R is transitive.

b. To find the equivalence class of 1, denoted [1], we determine all elements in S that are related to 1 under R. In this case, [1] consists of the perfect squares in S: {1, 4, 9, 16}.

c. The equivalence classes with more than one element are [1], [2], [3], ..., [18], and [19]. Each equivalence class represents a set of numbers that are squares of integers. The equivalence class [1] includes all perfect squares in S, while the other equivalence classes consist of a single element, which are non-square integers.

To know more about equivalence relation, click here: brainly.com/question/30956755

#SPJ11

instantaneous rate of change for the function:

f(x)= 5x^lnx ; x=3
Use the formula for instantaneous rate of change, approximating the limit by using smaller and smaller values of h, to find the instantaneous rate of change for the given function at the given value. f(x) = 5x x=3 The instantaneous rate of change for the function at x=3 is (Do not round until the final answer. Then round to four decimal places as needed)

Answers

The instantaneous rate of change for the function f(x) at x = 3 is 16.9068.

To determine the instantaneous rate of change for the function;  f(x) = 5x^ln(x), where x = 3, we can use the formula for the instantaneous rate of change, approximating the limit by using smaller and smaller values of h.

The instantaneous rate of change of the function f(x) at x = 3 can be found as follows:

Let h be a small increment of x that approaches zero. Then the formula for the instantaneous rate of change is given by:

f'(3) = lim[h→0] {(5(3+h)^(ln(3+h))-5(3^(ln3)))/h}

For the above formula, we have: Let f(x) = 5x^ln(x)

Then, f'(x) = 5x^ln(x) * [(d/dx) ln(x)] + 5*ln(x)*x^(ln(x) - 1)

Now, for the given problem, we can substitute 3 for x, and solve as follows: f'(3) = 5(3^ln(3)) * [(d/dx) ln(x)] + 5*ln(3)*3^(ln(3) - 1)

f'(3) = 5(3^ln(3)) * [(1/x)] + 5*ln(3)*3^(ln(3) - 1)

f'(3) = 5(3^ln(3)) * [(1/3)] + 5*ln(3)*3^(ln(3) - 1)

f'(3) = 5(3^ln(3) / 3) + 5*ln(3)*3^(ln(3) - 1)

Then, f'(3) = 5e ln(3) + 5 ln(3) / 3= (5e ln(3) + 5 ln(3) / 3)= 16.9068 (rounded to four decimal places).

Therefore, the instantaneous rate of change for the function f(x) at x = 3 is 16.9068.

Know more about instantaneous rate here,

https://brainly.com/question/30760748

#SPJ11

solve the equation 3a - 6 = -12.

Answers

Answer:

a=-2

Step-by-step explanation:

3a−6=−12

Step 1: Add 6 to both sides.

3a−6+6=−12+6

3a=−6

Step 2: Divide both sides by 3.

3a/ 3 = −6/ 3

a=−2

It’s a=2

I looked up the answer lol

what is 1/12 in simplest form

Answers

It cant be written any way else its already in its simplest form

Is this statement true or false? You calculate a finance charge by subtracting the cost of the purchase from the total payment,​

Answers

Answer:

True

Step-by-step explanation:

Brainliest?

Answer:

I Believe the answer is True

Step-by-step explanation:

Consider the triple integral defined below: = f(x, y, z) dv 2y² 9 Find the correct order of integration and associated limits if R is the region defined by 0 ≤ ≤1-20≤x≤2- and 0 ≤ y. Remember that it is always a good idea to sketch the region of integration. You may find it helpful to sketch the slices of R in the zy-, zz- and yz-planes first. Hint: There are multiple correct ways to write dV for this integral. If you are stuck, try dV=dz dzdy s s s f(x, y, z) ddd I=

Answers

The correct order of integration and associated limits for the given triple integral I = ∫∫∫[f(x, y, z)] dx dy dz with limits: 0 ≤ x ≤ 1 - 2y, 0 ≤ y, 0 ≤ z ≤ 2y²

The correct order of integration and associated limits for the given triple integral, let's first examine the region of integration R and its slices in different planes.

Region R is defined by 0 ≤ z ≤ 2y² and 0 ≤ x ≤ 1 - 2y.

1.Slices in the zy-plane: In the zy-plane, z is restricted to 0 ≤ z ≤ 2y², and y is unrestricted. Therefore, the integral can be written as:

I = ∫∫∫ f(x, y, z) dV = ∫∫∫ f(x, y, z) dz dy dx

2.Slices in the zx-plane: In the zx-plane, z is unrestricted, and x is restricted to 0 ≤ x ≤ 1 - 2y. Therefore, the integral can be written as:

I = ∫∫∫ f(x, y, z) dV = ∫∫∫ f(x, y, z) dx dz dy

3.Slices in the yz-plane: In the yz-plane, y is unrestricted, and z is restricted to 0 ≤ z ≤ 2y². Therefore, the integral can be written as:

I = ∫∫∫ f(x, y, z) dV = ∫∫∫ f(x, y, z) dy dz dx

Considering the given hint, we can choose any of the above orders of integration as all of them are correct ways to write the integral. However, for simplicity, let's choose the order: I = ∫∫∫ f(x, y, z) dz dy dx.

Now, let's determine the limits of integration for each variable in this order:

∫∫∫ f(x, y, z) dz dy dx = ∫∫ [∫[f(x, y, z) dz] from z=0 to z=2y²] dy dx

The innermost integral with respect to z is evaluated from 0 to 2y². The next integral with respect to y is evaluated from 0 to a certain limit determined by the region R. Finally, the outermost integral with respect to x is evaluated from 0 to 1 - 2y.

Therefore, the order of integration and the associated limits for the triple integral are:

I = ∫∫∫ f(x, y, z) dz dy dx

I = ∫∫ [∫[f(x, y, z) dz] from z=0 to z=2y²] dy dx

I = ∫∫∫[f(x, y, z)] dx dy dz with limits: 0 ≤ x ≤ 1 - 2y, 0 ≤ y, 0 ≤ z ≤ 2y²

To know more about  order of integration click here :

https://brainly.com/question/30286960

#SPJ4

Prove that for any x e R, if x2 + 7x < 0, then x < 0. X E

Answers

To prove that for any real number x, if  x²+ 7x < 0, then x < 0, we can use the properties of quadratic functions and inequalities.

By analyzing the quadratic expression, we can determine the conditions under which it is negative. This analysis shows that the inequality x²+ 7x < 0 holds true when x is less than 0. Consider the quadratic expression x² + 7x. To determine when this expression is negative, we can factor it as x(x + 7). According to the zero product property, this expression is equal to zero when either x or (x + 7) is equal to zero. Thus, the two critical points are x = 0 and x = -7.

Now, let's analyze the behavior of the quadratic expression in the intervals (-∞, -7), (-7, 0), and (0, +∞). Choose a test point from each interval, such as -8, -3, and 1, respectively. Evaluating the expression x²⁺7x for these test points, we find that for -8 and -3, the expression is positive, and for 1, it is positive as well.

Learn more about quadratic expression click here:

brainly.com/question/10025464

#SPJ11

hey guys could yall solve this problem for me? thanks

Answers

Answer:

Given ABCD ~ EFGH

FG = BC(EF/AB)

FG = 7(9/6)

FG = 63/6

FG = 10.5

GH = CD(EF/AB)

GH = 11(9/6)

GH = 99/6

GH = 16.5

EH = AD(EF/AB)

EH = 12(9/6)

EH = 108/6

EH = 18

Can someone answer all of them? Tysm!​

Answers

In a river bank

you can put the answers from the end

1.) 1/12

2.) 2/13

3.) 8/41

4.) 1/4

5.) 11/74

6.) 2/35

7.) 15/58

8.) 5/18

9.) 1/7

10.) 1/13

Find the coordinates of the endpoint of the image?

Answers

Given:

The end points of the line segment AB are A(-2,-3) and B(4,-1).

The rule of translation is:

[tex](x,y)\to (x+4,y-3)[/tex]

To find:

The coordinates of the end points of the line segment A'B'.

Solution:

It is given that the end points of the line segment AB are A(-2,-3) and B(4,-1).

We have,

[tex](x,y)\to (x+4,y-3)[/tex]

By using the above translation rule, we get

[tex]A(-2,-3)\to A'(-2+4,-3-3)[/tex]

[tex]A(-2,-3)\to A'(2,-6)[/tex]

And

[tex]B(4,-1)\to B'(4+4,-1-3)[/tex]

[tex]B(4,-1)\to B'(8,-4)[/tex]

Hence, the endpoint of the line segment A'B' are A'(2,-6) and B'(8,-4).

Question 8 of 9
Carlita has a swimming pool in her backyard that is rectangular with a length of 26 feet and a width of 16
feet. She wants to install a concrete walkway of width c around the pool. Surrounding the walkway, she
wants to have a wood deck that extends w feet on all sides. Find an expression for the perimeter of the wood
deck.

Answers

Then, the width of the pool covered by the concrete walkway is 16 + 2c feet (2c feet on each side), and the length of the pool covered by the concrete walkway is 26 + 2c feet (2c feet on each end).

We have given a rectangular swimming pool with a length of 26 feet and a width of 16 feet. We need to find the perimeter of the wood deck that surrounds the concrete walkway of width c around the pool and extends w feet on all sides.

Let's solve the given problem as follows:Firstly, let's calculate the dimensions of the concrete walkway. Let the width of the concrete walkway be 'c' feet.

Then, the width of the pool covered by the concrete walkway is 16 + 2c feet (2c feet on each side), and the length of the pool covered by the concrete walkway is 26 + 2c feet (2c feet on each end).

So, the dimensions of the pool and concrete walkway are (26 + 2c) ft. x (16 + 2c) ft.The dimensions of the wood deck that surrounds the concrete walkway by w feet on all sides will be (26 + 2c + 2w) ft. x (16 + 2c + 2w) ft.Now, let's write the expression for the perimeter of the wood deck.P = 2(Length + Width)P = 2[(26 + 2c + 2w) + (16 + 2c + 2w)]P = 2[42 + 4c + 4w]P = 84 + 8c + 8wThe expression for the perimeter of the wood deck is 84 + 8c + 8w. Hence, the answer is 84 + 8c + 8w.

For more such questions on pool

https://brainly.com/question/28063924

#SPJ8

Other Questions
Which of the following is true of the Sapir-Whorf hypothesis in the context of pain?a) It states that cultural differences in pain experiences, such as pain response, may occurquite early in life for English speakers.b) It states that individuals in poor and developing countries develop a higher tolerance topain compared to those in developed countries.c) It suggests that the structure of language, which is highly dependent on culture, affects ourperceptions and cognitions of our pain experiences.d) It suggests that our individual pain threshold, not our culture, is responsible for the waythat we perceive pain. Let U= (1, 2, 3, 4, 5, 6, 7, 8, 9), A = (1, 2, 3), B=(2, 4, 6, 8), and C = (1, 3, 5, 7, 9) a) Write the set BnA b) Write the set (A n B)UC c) Give an example of one element of A x B I d) What is n(A x B)? Agile project management works well with projects that take an iterative approach. What does this mean? Select all that apply.a. Project deliverables improve continuously based on feedbackb. The team operates within many short blocks of timec. The project will take longer to completed. Project processes are repeated many times during the life cycle of the project A large tank contains 70 litres of water in which 23 grams of salt is dissolved. Brine containing 13 grams of salt per litre is pumped into the tank at a rate of 8 litres per minute. The well mixed solution is pumped out of the tank at a rate of 3 litres per minute. (a) Find an expression for the amount of water in the tank after 1 minutes. (b) Let X(t) be the amount of salt in the tank after 6 minutes. Which of the following is a differential equation for x(0)? Problem #8(a): Enter your answer as a symbolic function of t, as in these examples 3.x(1) 70 +81 8x(1) 70 3.x(1) 81 (B) di = 104 (c) = 24 (F) S = 24 - X0 (G) * = 8 (D) THE = 104 - ( (IT (E) = 24 8.30) 70+81 8x(1) 70+ 51 = 104 - 32(0) 70+ 51 = 8 - X(1 Problem #8(b): Select Just Save Submit Problem #8 for Grading Attempt #3 8(a) Problem #8 Attempt #1 Your Answer: 8(a) 8(b) Your Mark: 8(a) 8(b) Attempt #2 8(a) 8(b) 8(a) B(b) 8(b) 8(a) Attempt 4 8(a) B(b) 8(a) 8(b) Attempt #5 8(a) 8(b) 8(a) 8(b) 8(b) Problem #9: In Problem #8 above the size of the tank was not given. Now suppose that in Problem #8 the tank has an open top and has a total capacity of 245 litres. How much salt (in grams) will be in the tank at the instant that it begins to overflow? Problem #9: Round your answer to 2 decimals QUESTION 2 5 points Save Answ The actual variable costs are $27000 and the actual units produced total 350 and the actual direct labour hours total 700. If the budgeted hour per unit are 3 and the bud Identify the three ways mobile technology connect to theinternet, and which one, from your point of view provides the bestcyber security for an individual? If your projected earnings in 10 years are $36,000 per year, what would you save in one year according to the 10% rule? O A. $360 B, $720 O C. $3,600 O D. $7,200 if the systolic pressures of two patients differ by 10 millimeters, by how much would you predict their diastolic pressures to differ? round the answer to three decimal places. Buck buys a 7.5% corporate bond with a current yield of 4.8%. How much did he pay for the bond? Consider a sample of perfect gas (0.10 mol held inside a cylinder by a piston such that the volume is 1.25 dm3. The external pressure is constant at 1.00 bar and the cylinder rests in bath at constant temperature 300 K. The gas expands when the piston is released. Calculate i) The volume of the gas when the expansion is complete. ii) The work done when the gas expands. iii) The heat absorbed by the gas during expansion. iv) Total change in entropy. A good whose demand is inversely related to income is a(n) O regular good. O inferior good. O normal good. new good. Compute the flux of F = 3(x + 2)1 +27 +3zk through the surface given by y = 22 + z with 0 Sy s 16, 20, 20, oriented toward the z-plane. Flux=__ A nurse is caring for a group of adult clients on an acute care nursing unit. Which clients does the nurse recognize as the most likely candidates for total parenteral nutrition (TPN)? Select all that apply.A client with pancreatitisA client with severe sepsisA client with renal calculiA client who has undergone repair of a hiatal herniaA client with a severe exacerbation of ulcerative colitis Interest rates adjusted for the effects of inflation are real variables, inflation is a nominal variable. and inflation are real variables. and inflation are nominal variables are nominal variables, inflation is a real variable. Suppose a country has only a sales tax. Now suppose it replaces the sales tax with an income tax that includes a tax on interest income. This would make equilibrium Interest rates fall and the equilibrium quantity of loanable Funds rise. interest rates and the equilibrium quantity of loanable funds fall. interest rates and the equilibrium quantity of loanable funds rise. interest rates rise and the equilibrium quantity of loanable funds fall Which of the following events could explain an increase in interest rates together with a decrease in investment? The government instituted an investment tax credit. None of the others is correct The government reduced the tax rate on savings. The government went from surplus to deficit. Perform mortgage calculations(monthly mortgage payment, adjusted mortgage payment, and an amortization schedule) on a property listed at $850,000. Loan term is 30 years fixed, 20% down payment, rate 4.625%, APR 4.636%. Tiffani Lind earned $2,800 during her biweekly pay period. Sheis married and claims 4 deductions. Her annual earnings to date are$53,459. Calculate her net pay. Assume Social Security is 6.2% (onupPayroll Period Weekly. Biweekly . Semimonthly Monthly Quarterly. . Semiannually Annually Daily or miscellaneous (each day of the payroll period) One Withholding Allowance $76.90 153.80 166.70 333.30 1 The following is a set of data from a sample ofn=5.4 9 4 4 6a. Compute the mean, median, and mode.b. Compute the range, variance, standard deviation, and coefficient of variation.c. Compute the Z scores. Are there any outliers?d. Describe the shape of the data set. If the stock currently sells for $30.70 per share, what is the market-to-book ratio? The priceearnings ratio? (Do not round intermediate calculations and round your answers to 2 decimal places, e.g., 32.16.)Market-to-book ratiotimesPriceearnings ratiotimes When 2.16 g of H2 reacts with excess O2 by the following equation, 258 kJ of heat are released.What is the change of enthalpy associated with the reaction of 1 mol of hydrogen gas?2H2 + O2 2H2O*Round your answer to the nearest whole number.*Include a negative sign if appropriate. QUESTION 19 State two improvements of the Baumol-Tobin theory in relation to the Liquidity Preference Theory of Keynes? For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). BIUS Paragraph v Arial